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Quantitative analysis on photon numbers 
received per cell for triggering β‑carotene 
accumulation in Dunaliella salina
Yimei Xi1,2, Song Xue2, Xupeng Cao3, Zhanyou Chi2* and Jinghan Wang2* 

Abstract:  Accumulation of β-carotene in Dunaliella salina is highly dependent on light exposure intensity and 
duration, but quantitative analysis on photon numbers received per cell for triggering β-carotene accumulation 
is not available so far. In this study, experiment results showed that significant β-carotene accumulation occurred 
after at least 8 h illumination at 400 µmol photons·m−2·s−1. To quantify the average number of photons received 
per cell, correlations of light attenuation with light path, biomass concentration, and β-carotene content were, 
respectively, established using both Lambert–Beer and Cornet models, and the latter provided better simula-
tion. Using Cornet model, average number of photons received per cell (APRPC) was calculated and proposed as 
a parameter for β-carotene accumulation, and constant APRPC was maintained by adjusting average irradiance 
based on cell concentration and carotenoids content changes during the whole induction period. It was found 
that once APRPC reached 0.7 µmol photons cell−1, β-carotene accumulation was triggered, and it was saturated 
at 9.9 µmol photons cell−1. This study showed that APRPC can be used as an important parameter to precisely 
simulate and control β-carotene production by D. salina.
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Introduction
β-carotene has wide applications in the nutraceuti-
cals, cosmetics, and food industries, and its current 
global consumption is about 1000 tons per year (Gong 
et  al. 2016). There has been a rising demand for natu-
ral β-carotene, instead of synthetic products, due to the 
advantages of its mixed stereoisomers of all-trans and 
9-cis β-carotene, which are more fat-soluble than syn-
thetic β-carotene (Combe et  al. 2015; Ben-Amotz and 
Avron 1989). Microalgae can serve as promising feed-
stock for natural β-carotene production, among which, 
green alga Dunaliella salina has been regarded as the 
best candidate because of its high β-carotene con-
tent (up to 14%) (Borowitzka et  al. 1988; Fachet et  al. 

2016; Rabbani et  al. 1998). The major function of the 
β-carotene accumulation in Dunaliella is energy dissipa-
tion and photo protection, which turn excess energy into 
heat (Gong et al. 2016; Combe et al. 2015).

For indoor production of β-carotene from Dunaliella, 
a two-stage cultivation strategy is usually applied for 
β-carotene accumulation (Liang et  al. 2019). In the first 
stage, also known as the ’green stage’, nutrient replete 
medium and optimal light intensity are adopted to obtain 
the green vegetative cells. Then in the second stage (also 
refer to as the ‘red stage’ or ‘induction stage’), green cells 
are subjected to various stress conditions such as high 
irradiance, high salinity and nitrate/phosphate depriva-
tion to stimulate β-carotene accumulation (Ben-Amotz 
et al. 1987; Kleinegris et al. 2011a, b; Lamers et al. 2012; 
Masojidek et  al. 2009; Pereira et  al. 2019). Up till now, 
such stress-induced D. salina β-carotene accumulation 
is mostly qualitatively investigated (Phadwal et  al. 2003; 
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Gong et  al. 2016; Fachet et  al. 2016; Bonnefond et  al. 
2017), while the exact quantitative relationship between 
stress and β-carotene accumulation is so far unknown. 
Among various stresses, light irradiance is considered 
to be the most important environmental parameter for 
β-carotene induction (Lamers et  al. 2010). Many efforts 
have been made on the coordination between incident 
light intensity and carotenoids accumulation in D. salina 
(Fachet et al. 2016; Gomez and Gonzalez 2005; Wu et al. 
2016; Xu et  al. 2016). However, the local light intensity 
decayed exponentially with the increase of light path 
and since light penetration decreases with cell growth 
and β-carotene accumulation, the relationship between 
initial light intensity at the culture medium surface and 
final β-carotene content in D. salina cells is ambiguous, 
thus cannot be applied for real-world β-carotene produc-
tion guidance, which unfortunately takes place in various 
cultivation configurations and at different culturing den-
sities. Quantifying photon numbers received per cell to 
initiate β-carotene accumulation, therefore, is necessary 
for establishing a meaningful relationship between illu-
mination and D. salina β-carotene production.

Clarifying average irradiance (number of photons) 
reaching each cell in the culture is the prerequisite to real-
ize the above goal. According to previous studies, incident 
light intensity, microalgae cell density, light path, and light 
extinction coefficient all have influences on the average 
irradiance for microalgae (Richmond et  al. 1999, 2003; 
Yun et  al. 2001; Huang et  al. 2014; Mchardy et  al. 2018), 
whereas the correlation between light extinction coef-
ficient and average irradiance is complicated by pigment 
accumulation (especially β-carotene) during the induction 
stage (Bechet et al. 2013; Fernandez et al. 1997; Martinez 
et al. 2012). Although the influence of pigment content on 
light extinction coefficient is available for other microal-
gal strains (e.g., astaxanthin in Haematococcus pluvialis) 
(Martinez et al. 2012; Gao et al. 2017), little effort has been 
focused on the impact of β-carotene content on light atten-
uation during β-carotene accumulation in D. salina sus-
pension, which therefore requires in-depth investigation.

The objective of this study is to quantify the effect of 
light availability on β-carotene accumulation. Firstly, 
light distribution in the D. salina suspension during 
β-carotene accumulation stage was simulated using Lam-
bert–Beer model and Cornet model, then the complex 
relationship between β-carotene accumulation and light 
absorption coefficient and scattering coefficient was com-
prehensively investigated. The present study quantified 
“light stress” via a physical variable, namely the average 
number of photons received per cell (APRPC), and the 
APRPC was controlled through adjusting average irradi-
ance corresponding to increased cell concentration and 
carotenoids content during the whole induction period. 

Critical values of APRPC for high β-carotene accumu-
lation in D. salina were identified. Results of this study 
would be of reference value on average irradiance mod-
eling and culture condition optimization, and could facil-
itate indoor and outdoor massive D. salina β-carotene 
production.

Materials and methods
Strain and medium
Dunaliella salina CCAP 19/18 was purchased from Cul-
ture Collection of Algae and Protozoa (Windermere, 
United Kingdom). The strain was previously maintained 
in modified Artificial Sea Water (ASW), with composi-
tion of 1.5 M NaCl, 5 mM KNO3, 0.45 mM MgCl2·6H2O, 
0.05  mM MgSO4·7H2O, 0.3  mM CaCl2·2H2O, 0.13  mM 
K2HPO4, 0.02  mM FeCl3, 0.02  mM EDTA, and 1  mL 
of trace elements stock containing 50  mM H3BO3, 
10  mM MnCl2·4H2O, 0.8  mM ZnSO4·7H2O, 0.8  mM 
CuSO4·5H2O, 2  mM NaMoO4·2H2O, 1.5  mM NaVO3, 
and 0.2 mM CoCl2·6H2O, and the pH was adjusted to 7.5 
by adding 40  mM of Tris-buffer (Doddaiah et  al. 2013). 
Stock culture was performed in 500-mL conical flasks at 
50  µmol photons·m−2·s−1 light intensity. After reaching 
steady state, the microalgal biomass was inoculated into 
a set of multi-device-equipped flat-plate photobioreac-
tors (PBRs) named “Algal Station” (Cao et al. 2019), and 
a schematic diagram of the system is displayed in Fig. S1.

Cultivation condition
Using the “Algal Station”, incident light intensities on the 
PBR surface by white LEDs were feedback controlled 
according to the measured outgoing irradiance, biomass 
concentration, and β-carotene content during the whole 
induction period. Incident light intensities and transmit-
ted light intensities were recorded online by NHGH09 
photosynthetically active radiation sensor (Wuhan 
Zhongke Nenghui Technology Development Co.,Ltd). 
Light paths of the PBRs were, respectively, 0.025  m, 
0.05  m and 0.10  m. The cultivation temperature was 
automatically controlled at 25 ± 0.5  °C, while pH level 
was maintained at 7.5 ± 0.2 by pulsing CO2 mixed with 
air. Cultures in the PBR were agitated with 0.2 µm mem-
brane filtered air at 400 mL·min−1.

Experimental design
Light transfer modeling in PBRs
To model the light distribution inside the culture, a set 
of experiments were conducted at incident light inten-
sity 400  µmol photons·m−2·s−1 with various biomass 
concentrations (0.10, 0.25, 0.50, 0.75, 1.0 and 1.5  g·L−1 
DW) and light paths (0.025  m, 0.05  m and 0.10  m). 
Local light intensity in the culture, along with biomass 
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concentration, were measured at different light paths 
using the NHGH09 photosynthetically active radiation 
sensor. This data was used to model light attenuation as 
a function of biomass concentration and light path, the 
measurements were carried out in triplicate.

In order to investigate the effect of β-carotene content 
on the light attenuation at different microalgae concen-
tration, low biomass concentration (0.5  g·L−1) and high 
biomass concentration (1.5  g·L−1) were chosen, and the 
cell density was adjusted to the required cell density after 
culture the microalgae. The Lambert–Beer model and 
Cornet model light transfer models were employed to 
calculate the local light intensity at different light paths 
(0.025, 0.05, 0.10  m) and five different β-carotene con-
tents (0.56%, 0.84%, 1.21%, 1.93%, 2.88%, 4.26% DW).

APRPC calculation
The average number of photons received per cell was cal-
culated, termed as APRPC, calculated by Eq. (1):

where APRPC is average number of photons received 
per cell (μmol photons·cell−1), Iav is the averaged irradi-
ance (μmol photons·m−2·s−1), T is the induction time (s), 
which is the time length of cultures under light exposure, 
starting from the time that the cells were transferred into 
the induction PBR. S is the area of illumination surface 
(0.051 m2), L is light path (0.025 m) and C is cell number 
(cell·L−1).

Short‑term effect of APRPC on β‑carotene accumulation
D. salina were cultivated for different time lengths 
(2, 4, 8, 12, 16, 24  h) and under different average irra-
diances (100, 200, 400, 800, 1200 and 1600  µmol 
photons·m−2·s−1), each treatment was repeated three 
times. In this experiment, the average irradiance inside 
the PBRs was kept constant through adjusting incident 
light intensity with increased cell concentration and 
carotenoids content during the whole induction period 
by “Algal Station” (Cao et al. 2019), and the ratio of inci-
dent irradiance and biomass concentration was used to 
optimize APRPC in batch cultures, thus APRPC could 
be controlled during the β-carotene accumulation 
induction stage. Pigment content and biomass meas-
urements were conducted within 24  h of sampling. In 
general, when β-carotene content was 2 times higher 

(1)APRPC =
Iav · T · S · L · 1000

C
,

than the initial content, it was regarded as significant 
β-carotene accumulation.

Long‑term effect of APRPC on β‑carotene accumulation
In order to get higher β-carotene content, long-term 
effect of APRPC on β-carotene accumulation in D. salina 
was investigated. A set of experiments were conducted at 
various average irradiance levels (50, 100, 400, 800, and 
1200 µmol photons·m−2·s−1) and induction times (24, 48, 
72, 96, 120, 144 h), the measurements were carried out in 
triplicate.

Analytical methods
Dry weight determination
Dry weight was determined using pre-weighed What-
man GF/C filters (47  mm diameter). 10-mL cultures 
were filtered and washed three times with 2  mL 0.5  M 
ammonium bicarbonate (Zhu et al. 1997) and then dried 
at 60 °C for over 16 h until the weight was constant, dry 
weight (g∙L−1) of the microalgae cells was calculated by 
subtracting the clear filter weight from the final weight 
(Chi et al. 2016).

Pigment measurement
For determining the amount of pigments including 
chlorophyll (Chla and Chlb) and carotenoids, about 
10  mg of dried biomass was extracted with 1  mL 90% 
(v/v) acetone, vortexed for 20  s, and then centrifuged 
at 10,000 rpm for 2 min. The above pigment extraction 
procedure was repeated until the solution was color-
less. The absorbance of Chla, Chlb and carotenoids 
content was measured at 665, 645, and 470 nm, respec-
tively, using a UV/VIS spectrophotometer (Jasco V-530, 
JASCO Corporation, Japan), according to the modified 
method of our previous study (Xi et al. 2020), and were 
calculated using the equations below:

where C: pigment concentration (mg∙L−1), Ax is absorb-
ance at x nm wavelength.

(2)CChla

(

mg · L−1
)

= 11.75 (A665)− 2.35 (A645),

(3)CChlb

(

mg · L−1
)

= 18.61 (A645)− 3.96(A665),

(4)

Total carotenoids
(

mg · L−1
)

= (1000A470 − 2.270CChla − 81.4CChlb)/198,

(5)Pigment content(%) =
Pigment concentration (mg · L−1)× volumn (5mL)

M (mg)
×0.001×100%
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where M: dry cell weight (mg).
A modified spectrophotometric method was used 

to determine β-carotene content in the biomass (Zhu 
et al. 2018). 1 mL of cell suspension was centrifuged at 
10,000  rpm for 2 min. After centrifugation, the super-
natant was discarded and 3  mL dodecane was added. 
The sample was shaken vigorously to re-suspend 
the algae pellets. Then, 9  mL of methanol was added 
to completely break up the cells and the tube was 
shaken vigorously again, then centrifuged for 2 min at 
10,000 rpm. The dodecane-containing lipophilic carot-
enoids (upper layer) were measured with a spectro-
photometer (Jasco V-530, JASCO Corporation, Japan) 
at 453  nm and 665  nm with dodecane as reference. 
β-carotene concentration was calculated as Eq. (6):

where (A453 − A665/3.91) is the absorbance of β-carotene 
corrected for chlorophyll contamination, 3.657 is the cal-
ibration factor derived from HPLC analysis of β-carotene 
concentration, 3 is the amount of milliliters of dodecane 
added for extraction, and X is the dilution factor to meas-
ure absorbance on spectrophotometer (Kleinegris 2011a, 
b).

The amount of β-carotene in the algae biomass was 
calculated according to Eq. (7):

where Cβ-car is the β-carotene content (mg∙L−1), DW is 
the cell dry weight (g·L−1).

Light distribution model establishment
Light attenuation analysis
Two models were adopted to analyze light attenuation 
inside the microalgae suspension, i.e., Lambert–Beer 
model (Eq.  (8)) (Bechet et  al. 2013), and Cornet model 
(Eqs. (9–11)) (Fernandez et al. 1997).

where I is the local light intensity (μmol photons·m−2·s−1), 
I0 is the incident light intensity (µmol·photons·m−2·s−1), 
Ka is the extinction coefficient (m2·g−1), X is the microal-
gae concentration (g·L−1), b is the fitting constant (m−1) 
and L is the light path (m):

(6)
Cβ−car

(

mg · L−1
)

= (A453 − A665/3.91)× 3.657× 3× X ,

(7)β − carotene (%) =
Cβ−car × 10

DW

(8)I = I0 · e
(−L·(Ka·X+b)),

(9)
I

I0
=

4α1

(1+ α1)2 · eα2 − (1− α1)2 · e−α2
,

where Ea is the mass absorption coefficient (m2·g−1), and 
Es is the mass scattering coefficient (m2·g−1), L is the light 
path (m), and X is the microalgae concentration (g·L−1). 
α1 and α2 represent the correlation between Ea and Es. 
Matlab 2014 was employed to estimate the parameters of 
Lambert–Beer model and Cornet model.

Average irradiance calculation
In the flat-plate reactor, the average light intensity can be 
calculated as Eq. (12) (Suh and Lee, 2001):

where Iav is the volume-averaged irradiance (μmol 
photons·m−2·s−1), V is the volume of the PBR (L), and I is 
the local light intensity (μmol photons·m−2·s−1).

Statistical analysis
The one-way ANOVA analysis were performed in Excel 
(version 2013, Microsoft) to make a significance analysis 
for the β-carotene content and light intensity.

(10)α1 =

√

Ea

Ea + Es
,

(11)α2 = (Ea + Es) · α1 · X · L,

(12)Iav =
1
/

V ·

∫

V

0
Idv,

Fig. 1  Variation of local light intensity with microalgae concentration 
and light path. The measurements were carried out in triplicate. Data 
shown as mean ± standard deviation, n = 3
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Results
Light attenuation in D. salina cell suspension
Light distribution in the D. salina suspension with 
incident light intensity of 400 µmol photons·m−2·s−1 is 
shown in Fig. 1. For all lengths of light path, as the PBR 
was well-mixed, local light intensity attenuated expo-
nentially with the increase of cell concentration, and 
longer light paths displayed much faster light attenu-
ation. At 0.25  g·L−1 cell concentration, the local light 
intensity at 0.025, 0.05, 0.10 light paths, respectively, 
decreased by 51.8%, 68.60% and 89.2% of the incident 
light intensity. While at 0.5  g·L−1 cell concentration, 
corresponding local light intensities were, respectively, 
reduced by 65.34, 83.36 and 96.17%. At 1.50 g·L−1 algae 
concentration, the light intensities of 22.34, 5.31 and 

0.30 µmol photons·m−2·s−1 were measured at 0.025 m, 
0.05  m, and 0.10  m light paths, respectively, holding 
only 0.08–5.6% of incident light intensity.

Figure 2 demonstrates the variation of transmittance 
(I/I0) with different cell concentrations at varied light 
paths. The results show that at low cell concentrations 
(˂ 0.75  g·L−1) light transmittance reduced significantly 
with increasing cell concentrations. When cell concen-
tration was higher than 0.75 g·L−1, however, I/I0 leveled 
off at 0.1 for 0.025  m light path and almost zeroed at 
0.05 m and 0.10 m light paths.

As evidenced by Fig.  2, the parameters calculated 
in this study were in good accordance with the classi-
cal Lambert–Beer model (Ka = 0.08 ± 0.006 m2·g−1, 
b = 1.280 ± 0.175  m−1, R2 = 0.984) and Cornet model 
(Ea = 0.023 ± 0.002 m2·g−1, Es = 0.749 ± 0.051 m2·g−1, 
R2 = 0.993) on light attenuation evaluation, and it fitted 
slightly better with the Cornet model. Light attenua-
tion is thought to be due to light scattering as well as 
absorption by microalgal cells themselves and by pho-
tosynthetic and accessory pigments at specific wave-
lengths. In order to quantify the light availability inside 
the PBR, it is necessary to measure the extinction coef-
ficient at different cellular β-carotene contents as well.

Effect of β‑carotene content on light attenuation
The impact of β-carotene content on the light attenua-
tion in the D. salina culture was investigated based on the 
assumption that the size and shape of all microalgae cells 
were consistent. The parameters in the Lambert–Beer 
model and Cornet model were estimated using data at dif-
ferent β-carotene contents, and are displayed in Table  1. 
From Table 1, it was revealed that the extinction coefficient 
Ka in the Lambert–Beer model and the scattering coef-
ficient Es in the Cornet model were positively related to 

a

b

Fig. 2  Experiment measured light attenuation and simulated values 
with a Lambert–Beer model and b Cornet model. In a, Ka is the 
extinction coefficient (m2·g−1), X is the microalgae concentration 
(g·L−1), b is the fitting constant (m−1). In b, Ea is the mass absorption 
coefficient (m2·g−1), and Es is the mass scattering coefficient 
(m2·g−1). Lines are simulation results and points are experimental 
measurements

Table 1  Variation of Ka, Ea and Es with different D. salina 
β-carotene contents

Values are mean (± SD) of n = 3 cultivations per treatment, Ka is the extinction 
coefficient (m2·g−1), Ea is the mass absorption coefficient (m2·g−1), and Es is the 
mass scattering coefficient (m2·g−1)

β-carotene 
content (%)

Lambert–Beer model Cornet model

Ka (m2·g−1) Ea (m2·g−1) Es (m
2·g−1)

0.56 0.0478 ± 0.0142 0.0316 ± 0.0015 0. 718 ± 0.021

0.84 0.0493 ± 0.0132 0.0242 ± 0.0010 0.754 ± 0.017

1.21 0.0504 ± 0.0175 0.0213 ± 0.0036 0.757 ± 0.014

1.93 0.0519 ± 0.0216 0.0207 ± 0.0042 0.846 ± 0.018

2.88 0.0558 ± 0.0224 0.0196 ± 0.0026 0.883 ± 0.013

4.26 0.0587 ± 0.0144 0.0167 ± 0.0032 0.948 ± 0.060
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β-carotene content, whereas the absorption coefficient Ea 
was negatively related to β-carotene content. Ka, Es and Ea 
as a function of β-carotene content are, respectively, dis-
played in Eqs. (13)–(15):

where Xβ-carotene content is the dry weight content of 
β-carotene, while r is the Spearman’s correlation coeffi-
cient, generally, there is a strong correlation between two 
events if the Spearman correlation coefficient exceeds 0.8 
(Zhang et  al. 2019), and R2 is the regression coefficient. 

(13)Ka = 0.0466+ 0.0029× Xβ−carotene content

(

R
2
= 0.98, r = 0.99

)

,

(14)
Es = 0.70+ 0.06× Xβ−carotene content

(

R
2
= 0.95, r = 0.98

)

,

(15)Ea = 0.02+ 0.05× EXP(−2.62× Xβ−carotene content)

(

R
2
= 0.90, r = −0.82

)

,

Figure 3 displays the effect of β-carotene content on light 
attenuation under different biomass concentrations, 
using Cornet model, with relatively low (0.5  g∙L−1) and 
high (1.5  g∙L−1) biomass concentrations, respectively, 
investigated. It was revealed that β-carotene content had 
a greater influence on light attenuation at low biomass 
concentration (Fig.  3a), while such influence was not as 
obvious at high biomass concentration (Fig. 3b).

The relationship between APRPC and β‑carotene 
accumulation
In order to calculate APRPC during β-carotene accu-
mulation, it was necessary to analyze the effect of aver-
age irradiances (Iav) and induction times on β-carotene 
accumulation. A contour-color fill plot of the variation 
in β-carotene content with various average irradiances 
and induction times is displayed in Fig.  4. From the 
results, it can be seen that β-carotene content increased 
with Iav and induction time. At 2 h induction time and 
100  μmol photons·m−2·s−1 Iav, low β-carotene content 
(0.70%) was obtained, implying that β-carotene accu-
mulation had not started yet under this culture condi-
tion. When induction time was more than 8 h, and Iav 
was higher than 400 μmol photons·m−2·s−1, more than 
twice β-carotene content was obtained. The highest 
β-carotene content (2.83%) was reached at 24 h induc-
tion time and Iav of 1600 μmol photons·m−2·s−1.

APRPC varied greatly under different induction times 
and irradiances (see Table  2), and was a function of 
β-carotene content for both short-term (≤ 24  h) and 
long-term (24 ~ 144 h) cultivation, as displayed in Fig. 5. 
The β-carotene content displayed positive correlations 
with APRPC but increased slowly at very low APRPC, 
implying that the APRPC was too low to induce sub-
stantial β-carotene accumulation in D. salina. Regarding 
both Table 2 and Fig. 4, it was found that when APRPC 

reached 0.7 µmol photons·cell−1, β-carotene content was 
twice original level. As displayed in Fig. 5a, within 24 h 
of induction, β-carotene content increased with APRPC. 

Thus, the quantitative relationship between APRPC and 
D. salina β-carotene accumulation was built. The data 
displayed in Fig.  5a are also helpful for optimal short-
term β-carotene induction condition (average irradiance 

a

b

Fig. 3  Variation of local light intensity with light path at different 
β-carotene contents using Cornet model. a Microalgae concentration 
of 0.5 g∙L−1, b microalgae concentration of 1.5 g∙L−1. Lines are 
simulation results and points are experimental measurements
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and induction time) estimation, which can benefit effi-
cient β-carotene production on the whole.

A long-term (24 ~ 144  h) light induction strategy was 
applied to get higher β-carotene content, with results 
displayed in Fig.  5b. The highest β-carotene content of 
7.24% was observed at APRPC of 9.9 μmol photons·cell−1 
at the end of cultivation, followed by 7.10% at 13.2 μmol 
photons·cell−1, and 7.0% at 11  μmol photons·cell−1, 
respectively. An increase in cellular chlorophyll content is 
commonly observed in strains grown under low APRPC, 
conversely, β-carotene content increase in cells exposed 
to high APRPC in order to minimize photo-oxidation 
processes (Fig.S2). The cellular β-carotene content is thus 
a main indicator of the light acclimation state of cells.

Discussion
Previous studies indicated that the average irradiance was 
the key factor for carotenoids induction in microalgae, 
and have extensively used this parameter to describe light 
supply to PBRs (Fernandez et al. 1998; Grima et al. 1997, 
1994; Zhang et al. 2016). However, average volume irradi-
ation in the PBR was difficult to keep constant, due to the 
ever changing biomass concentration throughout the cul-
tivation process, and sometimes accompanied by varied 
cellular pigments content as well. Therefore, selecting an 
appropriate illumination strategy and adjusting the cul-
ture conditions are crucial to achieve quantitative con-
trol for β-carotene production, and this would provide 
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Table 2  APRPC (µmol photons·cell−1) at different Iav and induction times

Values are mean (± SD) of n = 3 cultivations per treatment

APRPC average number of photons received per cell

Iav (μmol 
photons·m−2·s−1)

Induction time (h)

2 4 8 12 16 24

100 0.02 ± 0.001 0.05 ± 0.002 0.09 ± 0.002 0.14 ± 0.002 0.18 ± 0.001 0.28 ± 0.002

200 0.05 ± 0.002 0.09 ± 0.002 0.18 ± 0.001 0.28 ± 0.002 0.37 ± 0.002 0.55 ± 0.002

400 0.09 ± 0.002 0.18 ± 0.001 0.36 ± 0.002 0.55 ± 0.002 0.73 ± 0.001 1.10 ± 0.030

800 0.18 ± 0.002 0.37 ± 0.002 0.73 ± 0.001 1.10 ± 0.030 1.47 ± 0.030 2.20 ± 0.012

1200 0.27 ± 0.001 0.55 ± 0.002 1.10 ± 0.002 1.65 ± 0.010 2.20 ± 0.012 3.30 ± 0.014

1600 0.37 ± 0.001 0.73 ± 0.001 1.47 ± 0.030 2.20 ± 0.012 2.94 ± 0.042 4.40 ± 0.024
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a more precise culture condition for quality control, 
instead of depending on the ever changing solar radia-
tion. The average irradiance inside the PBRs in the pre-
sent research was kept constant by feedback control of 
the incident irradiance according to the measured trans-
mitted irradiance, biomass concentration, and β-carotene 
content during the whole induction period, and the ratio 
of average irradiance and biomass concentration was 
used to optimize APRPC, thus APRPC was controlled 
during the β-carotene accumulation induction stage. 
With this method, the effect of APRPC on β-carotene 
accumulation was investigated. Previous study calcu-
lated the carotenoid yield (mg·L−1) on absorbed light 
energy (mol−1 photons) (Fachet et  al. 2016), but this is 
not enough to determine how many photons are required 

to trigger the accumulation of β-carotene. Kandilian 
et  al. (Kandilian et  al. 2014, 2019) proposed a concept 
of “MVERA” (mean volumetric rate of energy absorp-
tion, which is a function of incident irradiance and light 
attenuation in the PBR depending on biomass concentra-
tion and cellular pigment content) to quantify microalgal 
TAG accumulation and pigment synthesis, and MVERA 
is the number of photons absorbed by the cell per unit 
time. In this study, APRPC is the number of photons 
absorbed by the cell during the whole induction period, 
it is a function of average irradiance and biomass concen-
tration in the PBR depending on cellular β-carotene con-
tent and light path, rather than the incident irradiance in 
the MVERA, so the number of photons absorbed by per 
cell to initiate β-carotene accumulation can be calculated 
more accurately by APRPC in this study.

The relationship between β-carotene content and 
light attenuation with different biomass concentrations 
in D. salina was also investigated in this study. The light 
attenuation in D. salina cells in present study was not 
consistent with previous studies (Garcia-Malea et  al. 
2006; Sheng et  al. 2018), and revealed better expla-
nation by Cornet model, rather than Lambert–Beer 
model, although Lambert–Beer model was success-
fully used in modeling other microalgae species such 
as Phaeodactylum tricornutum at low biomass concen-
tration (Fernandez et al. 2000). Such discrepancy could 
be because the size of the D. salina cells was much big-
ger (15–20  μm at the β-carotene accumulation stage) 
comparing with 3–8  μm of P. tricornutum cells, thus 
the light scattered by microalgal cells could not be 
neglected. Also, the results obtained from this study 
were not in accordance with previous observation that 
decrease in carotenoids concentrations led to decrease 
in absorption coefficient (Kandilian et  al. 2014). Actu-
ally, light absorbed by cells themselves was also con-
sidered in calculating the absorption coefficient. The 
scattering coefficient was greater than the absorption 
coefficient in this study, and this difference between 
both coefficients could be due to the great changes in 
cellular composition, as well as β-carotene content of 
the cells (Kandilian et  al. 2019). It is noteworthy that 
scattering coefficients are greater than the absorption 
coefficients owing to high β-carotene contents in D. 
salina cells.

In this study, it was showed that APRPC can be used 
as an important parameter to accurately simulate and 
control β-carotene production in D. salina cultiva-
tion process. It was found that once APRPC reached 
0.7  µmol photons cell−1, β-carotene accumulation was 
triggered, and it was saturated at 9.9  µmol photons 
cell−1. Considering the estimations that each microal-
gal cell needs 1 µmol.4 × 10−4 photons of light energy 
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on average to maintain basic metabolism (Grima et al. 
1997; Ogbonna and Tanaka 2000), this amount of 
energy is quite low compared with the 0.7  µmol pho-
tons cell−1 proposed by this study. According to previ-
ous study, 3.3–6.6 µmol photons of light energy would 
lead to photoinhibition in microalgae cells (Carvalho 
et  al. 2011), which is much lower than 9.9  µmol pho-
tons cell−1 (the critical value to cause β-carotene accu-
mulation saturation). This discrepancy may be due to 
the fact that synthesis of β-carotene requires more light 
energy than other secondary metabolites. Alternatively, 
it may be a response to acclimate to very high irradi-
ances and is triggered by the generation of reactive oxy-
gen species at high irradiances (Shaish et  al. 1993). It 
has to be noted that, however, we have done this work 
at only one salinity, while the rate of β-carotene accu-
mulation is not only light dependent, but also salinity 
dependent (Borowitzka et  al. 1990) and the maximum 
content accumulated is also salinity dependent (Ben-
Amotz and Avron 1983; Loeblich 1982). To overcome 
such limitation, the relationship between APRPC and 
β-carotene accumulation in D. salina under different 
salinities will be conducted in our future research.

APRPC can be used as an important parameter to be 
controlled in D. salina β-carotene production for both 
indoor and outdoor cultivation. Under laboratory con-
ditions, artificial lights are used as the energy source for 
β-carotene production. As light quality is also important 
in carotenoid accumulation in D. salina (Xu and Harvey 
2019a,2020; b), the average number of photons received 
per cell under a specific light spectrum should also be 
considered in the future, so that the red light effects and 
the fact that water preferentially absorbs red light could 
be accounted, thereby the precise control of β-carotene 
accumulation under any light intensity and light quality 
can be achieved. For massive scale cultivation, artificial 
light may also be used, thanks to the high value of natural 
β-carotene products. In this situation, the APRPC may be 
well controlled by adjusting average light intensity, light 
spectrum, illumination areas, cell density in the PBR, as 
well as the induction time. However, in most cases, sun-
light is used for D. salina outdoor cultivation to save the 
production cost. In this situation, the input light intensity 
or light spectrum is not controllable, and it is difficult to 
maintain a constant APRPC. However, by adjusting the 
cell density, light path in the PBRs, as well as the induc-
tion time, similar level of APRPC during each day may 
be controlled. The cell density can be adjusted by dilut-
ing or concentrating the culture, and the light path can be 
adjusted by the depth of the culture.

It is notable that APRPC model established in this study 
may be used as an example for other carotenoids accu-
mulation in other microalgae species, too: for example, 

the accumulation of astaxanthin in H. pluvialis and the 
accumulation of fucoxanthin by P. tricornutum. Although 
previous studies have made some attempts to control the 
average irradiance for astaxanthin induction in H. pluvia-
lis (Sheng et  al. 2018), the average irradiance inside the 
PBRs kept changing and the APRPC was not controlled 
in the process. With determining the parameters for 
astaxanthin in H. pluvialis, similar model may be devel-
oped, and this could realize the controllable accumula-
tion of high-value carotenoids. Thus, this study provided 
a promising method to produce microalgal biomass with 
consistent carotenoids content, which is important for 
stable production and good quality control.

Conclusion
Cornet model gave better prediction on calculating aver-
age light intensity in the process of β-carotene accu-
mulation by D. salina. The APRPC can be controlled 
as a constant using the Algal Station system, despite of 
the ever changing cell density and carotenoids con-
tent in the cultivation. A minimum APRPC of 0.7 µmol 
photons·cell−1 was necessary to trigger significant D. 
salina β-carotene accumulation, and β-carotene con-
tent was saturated when APRPC reached 9.9 µmol pho-
tons cell−1. Biomass concentration and light path can be 
adjusted based on these APRPC characteristics in practi-
cal outdoor cultivation, so as to ensure that each cell gets 
a sufficient number of photons to accumulate a sufficient 
amount of β-carotene. Methods developed in this study 
can be used in other carotenoids production, such as 
astaxanthin by other microalgae species.
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