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Abstract 

Rasburicase is an expensive treatment used to control hyperuricemia caused by tumour lysis syndrome (TLS). In this 
study, a non-chromatographic method was designed based on nano-oil bodies for convenient and economical puri-
fication of the recombinant uricase. For this purpose, two chimaeras were synthesized with a different arrangement of 
the uricase, caleosin and intein fragments. After confirming the protein expression by measuring the uricase activity 
at 293 nm, purification was conducted through oil-body construction. The results were resolved on the 12% SDS-
PAGE gel. Finally, the stability of the oil bodies was examined against different salts, surfactants, temperatures, and pH 
values. According to our results, the overexpression of uricase–caleosin chimaera under the T7 promoter in Escherichia 
coli led to the production of soluble protein, which was successfully purified by artificial oil bodies. The active uricase 
was subsequently released through the self-splicing of intein. Further investigations highlighted the importance of 
the free C-terminus of caleosin in constructing artificial oil bodies. Moreover, surfactants and low temperature, in 
contrast to salts, improved the stability of oil bodies. In conclusion, caleosins are an efficient purification tag reducing 
the cost of purification compared to conventional chromatography methods.
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Introduction
Uricase or urate oxidase (EC 1.7.3.3) is a homotetrameric 
enzyme that catalyses the oxidation of uric acid during 
purine catabolism. In contrast to most living organisms, 
the gene encoding the enzyme has become dysfunctional 
in the human lineage owing to some nonsense mutations 
(Kratzer et  al. 2014). Although several advantages have 
been suggested for the evolutionary removal of uricase 
in humans, excessive uric acid levels are associated with 
the risk of hyperuricemia, gout, high blood pressure, 
metabolic syndrome, diabetes as well as heart and kid-
ney diseases (Álvarez-Lario and Macarrón-Vicente 2010). 
Hyperuricemia is also a part of tumour lysis syndrome 
(TLS) that can be fatal in one-third of patients (Mayne 
et al. 2008). Therefore, a recombinant uricase from Asper-
gillus flavus, termed rasburicase, has been approved by 
the Food and Drug Administration (FDA) to control uric 
acid levels. However, treatment with this drug is expen-
sive—as much as 7500 $ per day for a 70  kg person. 
Therefore, approaches to reduce the cost of treatment 
are highly desirable. According to economic analysis, the 
purification of uricase using an aqueous two-phase sys-
tem (ATPS) instead of chromatography could save about 
4000 $ per gram by reducing capital, consumables, and 
labour (Torres-Acosta et al. 2016).

ATPS has been known for the separation and concen-
tration of cell organelles, proteins, nucleic acids, and low 
molecular weight compounds since the early 1960s (Raja 
et al. 2012). This water-in-water (W/W) emulsion is usu-
ally prepared based on the incompatibility of two water-
soluble components, e.g. polymers, kosmotropic salts, 
alcohols and/or surfactants. Although ATPS is easier 
and faster than chromatography, the material costs are 
still remarkable. Moreover, solvent recycling and unclear 
separation mechanisms are among the main barriers 
(Pereira et al. 2020). Despite higher viscosity and interfa-
cial tensions of oil-in-water (O/W) emulsions, they lack 
the  drawbacks of ATPS. Furthermore, O/W emulsion 
droplets are used for various applications, such as drug 
delivery and bioavailability, encapsulation, and the food 
industry (Chao and Shum 2020).

Oil bodies are naturally formed using neutral lipids, 
phospholipids, and membrane proteins. The latter com-
ponent constitutes the smallest part; however, that is the 
most critical in terms of the construction and stability 
of oil bodies. The amphiphilic nature of proteins allows 
them to coat oil particles, reduce the interfacial tension, 
and stabilize dispersions (Lam and Nickerson 2013). Ole-
osin and caleosin are the two best-known structural pro-
teins of oil bodies (Purkrtová et al. 2015). Since oleosins 
were discovered about 30  years earlier than caleosins, 
more investigations have applied them for protein purifi-
cation (Chiang et al. 2005, 2007; Liu et al. 2008; Choi and 

Chang 2009), protein targeting (Karg and Kallio 2009; 
Montesinos et  al. 2016; Huang et  al. 2017), bioencapsu-
lation (Chang et al. 2013), enzyme immobilization (Chi-
ang et  al. 2006), and antibody production (Tseng et  al. 
2011). However, caleosins have the advantage to make 
smaller oil bodies, which are more useful in drug delivery 
(Chiang et al. 2011, 2012) and bioavailability (Chen et al. 
2005). Owing to these advantages, we have thus focused 
on the purification of recombinant uricase using the 
nano-oil bodies containing caleosin instead of oleosin.

Material and methods
Construction of expression plasmids
The full-length sequence of uricase–intein–caleosin (UC) 
was custom-synthesized (GeneralBiosystems, U.S.A.) 
and cloned into the pET28α vector (University of Tehran, 
Iran). The pET-UC plasmid template was used to synthe-
size the caleosin–intein–uricase chimaera (CU) by over-
lap extension (OE)-PCR through three steps. In the first 
step, each fragment was amplified separately using the 
primers listed in Table 1. The oligonucleotides were pur-
chased from SinaColon (Iran) and Bioneer Inc. (South 
Korea). The produced intein harboured overlapping 
sequences for uricase and caleosin at its C and N-termi-
nus, respectively. Then, an equimolar amount of all three 
fragments was mixed for assembling the CU chimaera. 
Finally, the OE-PCR product was amplified using the 
oligonucleotide forward primer of caleosin (FC) and the 
reverse primer of uricase (RU). All the mentioned reac-
tions were performed with Phusion high-fidelity DNA 
polymerase (Fermentas) using GeneAmp PCR System 
9700 in the following program: pre-denaturing (94  °C, 
3  min), 25 cycles of denaturing (94  °C, 40  s), anneal-
ing, (50  °C, 30  s), and extension (72  °C, 1  min/kb), and 
a final extension (72 °C, 10 min). The desired PCR prod-
uct was cloned into the pJET1.2/blunt and then digested 
with NotI and EcoRI to ligate into the expression vector 
pET28α. The accuracy of the recombinant constructs 
was confirmed by digestion and DNA sequence analysis 
(Microsynth, Austria) using the T7 sequencing primers.

Table 1  List of primer sequences used in this study

Primer 
name

Nucleotide sequence

FU GAA​TTC​AAA​ATG​TCT​GCA​GTA​AAG​

RU GCG​GCC​GCA​TTA​TAA​CTT​GGA​TTT​CAA​GGA​AGA​

FC GAA​TTC​AAA​ATG​GGA​TCA​GAG​ATC​GAC​GAT​TC

RC GCG​GCC​GCA​TTA​TCT​ACC​

FIC CTA​AGA​TGA​ACA​TGG​GTA​GAG​CCG​TAT​CAG​GTG​ATA​CTA​TCG​
TAATG​

RIU CTA​GCG​GCC​TTT​ACT​GCA​GAA​TTA​TGG​ACA​ATG​AAT​CCG​TTG​
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Bacterial strains and expression method
The resulting plasmids were transferred into Escherichia 
coli Top10 and BL21 (DE3) for the recombinant construct 
amplification and expression, respectively. The cells were 
grown in LB medium containing 50 µg ml−1 kanamycin. 
Expression was optimized according to the Sambrook 
protocol (Sambrook et  al. 1989) at a final OD600 of 0.7. 
Then, the cells were harvested by centrifugation (4500×g, 
4  °C, 20 min). The pellet was re-suspended in 3% of the 
initial LB volume of phosphate buffered saline (pH 8.5, 
0.137  M NaCl, 0.027  M KCl, 0.01  M Na2HPO4, and 
0.0018 M KH2PO4), and then lysed on ice by sonication 
using a LABSONIC P (Sartorius AG, Germany). Insolu-
ble material was pelleted by centrifugation, and the solu-
ble fraction was stored at − 20 °C for further analyses.

Protein purification
The procedure for protein purification was carried out as 
described by Tai et al. (Tai et al. 2002). In brief, 250 μl of 
the extracted proteins, 150 μg phosphatidylcholine (Sigma-
Aldrich) and 15  mg olive oil were suspended in 1  ml of 
0.1  M sodium phosphate buffer (pH 7.5). After mixing, 
three times sonication with 30% amplitude was done on ice 
for 20 s for the constitution of artificial oil bodies (AOBs). 
After centrifugation (10,000×g, 4  °C, 15  min), the AOBs 
were collected and subjected to the desired pH or 40 mM 
DTT for 16 h to release the target protein. Finally, the oil 
and aqueous phases were separated by centrifugation and 
each phase was analysed by SDS-PAGE and enzyme assay.

Protein purity and molecular weight determination
The purity of the proteins was determined on 12% of 
sodium dodecyl sulfate-polyacrylamide gel electropho-
resis (SDS-PAGE). Gel electrophoresis was performed 
using Mini-PROTEAN Tetra Cell (BioRad) and proteins 
were stained with Coomassie blue R-250. A prestained 
protein ladder (ThermoFisher, 26616) was used to deter-
mine the molecular weight of the proteins.

Microscopy of AOBs
The size and shape of AOBs constituted with and with-
out the chimaera proteins were observed under a light 
microscope (Zeiss Axioplan 2, Germany). The result was 
interpreted by ImageJ software (version 1.8.0) (Schneider 
et al. 2012).

AOBs stability test
The AOB’s stability was measured by turbidity changes at 
600 nm at room temperature (Chen et al. 2004). One mil-
lilitre of suspension mixture was placed in a disposable 
cuvette and treated with different parameters, including 
salts, surfactants, pH, and temperature.

Uricase activity assay
The uricase activity was determined by continuous spec-
trophotometry. The reaction solution contained 0.11 mM 
uric acid (Carl Roth) prepared in 20  mM boric acid 
buffer pH 9. The enzymatic reaction was monitored at 
293  nm for 5  min using a SPECORD 205 Analytik Jena 
(Germany). Subsequently, the activity was calculated 
using the Lambert–Beer law (extinction coefficient at 
293 nm = 12.6 mM−1 cm−1). A unit (U) of uricase activity 
was defined as the consumption of one micromole of uric 
acid per min at pH 9.0 at 25 °C. Finally, the protein con-
centration was measured using Bradford assay (Bradford 
1976) for calculating the specific activity.

Molecular modelling and docking
The intensive mode of Phyre2 (www.​sbg.​bio.​ic.​ac.​uk/​
phyre2) was utilized to predict the 3D structure of 
the chimaera proteins (Kelley et  al. 2015). The c1r56H 
from protein data bank (PDB) was used for retrieving 
the uricase domain. Besides, 17 structures (including 
c3u0kA, c4i2yB, c2hpkA, d1dtla, c3evrA, c3sibA, c3dtpF, 
d1iq3a, and c3ek7A for caleosin, and c4o1rA, c2imzA, 
c2in0A, d1am2a, d1mi8a, c2keqA, c4o1sB, and c2jmzA 
for intein) were selected on the basis of sequence iden-
tity (> 88%) for the modelling of caleosin and intein. 
Subsequently, the created models were refined and veri-
fied using ModRefiner (https://​zhang​lab.​ccmb.​med.​
umich.​edu/​ModRe​finer/) and SAVES v5.0 (http://​servi​
cesn.​mbi.​ucla.​edu/​SAVES/), respectively (Colovos and 
Yeates 1993; Xu and Zhang 2011). Then, molecular dock-
ing was applied to predict the binding of modelled chi-
maeras against uric acid by SwissDock (www.​swiss​dock.​
ch) (Grosdidier et al. 2011). A grid box of 30 points in all 
directions of L147 was defined with a flexibility of 3 Å. 
Finally, the outputs were compared by the free energy 
of ligand binding (ΔGbinding, kcal/mol). The macromo-
lecular structures were visualized by BIOVIA Discovery 
Studio (version 3.5).

Statistical analysis
Each experiment was performed in three replications 
using freshly prepared samples. The collected data were 
analysed using R (version 3.6.3). The one-way analysis 
of variance (ANOVA) and two-sample Wilcoxon test 
was used to compare the results, and p < 0.05 was con-
sidered a significant variation.

Results and discussion
Expression of UC and CU chimaeras in E. coli
The UC and CU chimaeras were successfully con-
structed and transformed into E. coli BL21. To deter-
mine the optimum expression conditions, the effect of 

http://www.sbg.bio.ic.ac.uk/phyre2
http://www.sbg.bio.ic.ac.uk/phyre2
https://zhanglab.ccmb.med.umich.edu/ModRefiner/
https://zhanglab.ccmb.med.umich.edu/ModRefiner/
http://servicesn.mbi.ucla.edu/SAVES/
http://servicesn.mbi.ucla.edu/SAVES/
http://www.swissdock.ch
http://www.swissdock.ch
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temperature and inducer concentration were investi-
gated. The best result was obtained with 1 mM IPTG at 
20 °C and overnight incubation.

The protein content of induced and non-induced 
recombinant strains was analysed using SDS-PAGE. 
Accordingly, the production of recombinant protein 
under the control of the T7 promoter led to the appear-
ance of a sharp band in the soluble fraction of the cell 
lysate (Fig. 1). Although a molecular mass of 72 kDa was 
expected for both chimaeras, the expressed proteins 
exhibited a mobility corresponding to a molecular mass 
between 35 and 40 kDa. The analyses of the diluted sam-
ple revealed two distinct bands for uricase (~ 34 kDa) and 

intein–caleosin (~ 40  kDa). Subsequently, the activity of 
the produced proteins was confirmed by uricase assay. 
Apparently, cleavage of the fusion protein has occurred 
under the reducing conditions used for SDS-PAGE. The 
faster migration of intein–caleosin could be caused by the 
binding of caleosin to available Ca2+ (Chen et al. 1999). 
In contrast, the multi-subunit structure of uricase is sup-
posed to show less mobility on SDS-PAGE since they are 
resistant to denaturation by SDS (Pitts et al. 1974).

It is noteworthy that membrane proteins like caleosins 
are insoluble and get stuck in the pellet. However, the 
chimaera proteins were soluble.

Purification of uricase by AOB system
The purification of recombinant uricase was conducted 
using the AOB-based system. In the first step, AOBs 
were successfully formed using oil, phosphatidylcholine, 
and soluble fraction of cell lysate (with and without the 
chimaera proteins). The construction of AOBs was con-
firmed by microscopic visualization. As can be seen in 
Fig. 2, the AOBs were almost coalescence in the control 
condition, which was without the chimaera proteins. 
However, the presence of UC protein makes the nanopar-
ticles (about 0.2 μm) (Fig. 2C). The comparison between 
the chimaera proteins indicates that CU is not a compe-
tent candidate for the construction of AOBs (Fig. 2B). It 
seems a free C-terminus might be required for caleosin 
to build more stable and smaller droplets. However, it has 
been reported that the N-terminus is also necessary for 
targeting caleosin to oil bodies (Purkrtová et al. 2015).

After centrifugation, the AOBs separated from the 
aqueous phase and washed to eliminate the non-specific 
proteins (Fig. 3, lanes 2 and 3). Then, uricase was released 
by inducing the self-cleaving intein through shifting the 
pH and/or using 40  mM DTT at room temperature. 
Accordingly, uricase was retrieved in the aqueous phase 
(Fig.  3, lane 4), whereas intein–caleosin (Fig.  3, lane 1) 
remained in AOBs. Finally, all the mentioned fractions 

Fig. 1  SDS-PAGE of UC chimaera expressed in E. coli with 1 mM 
IPTG and overnight incubation at 20 °C. Soluble (1) and insoluble 
(2) fractions before IPTG induction and soluble (3) and insoluble 
(4) fractions after induction were resolved on SDS-PAGE. Lane 5 is 
a dilution of lane 3. The positions of intein–caleosin (~ 40 kDa) and 
uricase (~ 34 kDa) were indicated by a and b, respectively

Fig. 2  Light microscopy of artificial oil bodies constituted with and without chimaera proteins. A Represents sonicated olive oil with no chimaera 
protein, while B and C show the sonicated olive oil in the presence of CU and UC chimaera, respectively. The bar represents 100 μm for control and 
20 μm for two other
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were resolved on SDS-PAGE (Fig. 3). Repetition of puri-
fication steps improved the purity of the uricase (Fig. 3, 
lane 5).

The specific activity of the enzyme was increased 
from 0.53 U/mg in the crude extract to 15.2 U/mg in the 
purified enzyme, which is comparable with the purified 
uricases by chromatography columns (Fazel et  al. 2014; 
Khaleghi and Asad 2021).

AOB stability
The AOB particles are shaped by balancing the attrac-
tive and repulsive forces of structural proteins (Tzen et al. 
1992). Therefore, any change in pH, ions or solvent that 
causes protein unfolding affects emulsion stability.

Our investigations on a wide range of pH values (3 to 
11) revealed phase separation at the pH around the iso-
electric point (pI) of caleosin (pH 5). Indeed, a gradual 
increase in the emulsifying property occurs as the pH 
value gets far from the isoelectric point (Wang et al. 2019; 
Gao et al. 2021). Moreover, the AOB droplets aggregate 
at pH 3 to 4 since the acidic environment increases sur-
face hydrophobicity of oil bodies and thus leads to coa-
lescence (Gao et al. 2021).

The effects of three concentrations of 50, 100, and 
300 mM of different salts, including MgCl2, CaCl2, KCl, 
and Na2SO4, were also traced on AOB suspension for 
15 min by turbidity tests. All the salts caused instability 
proportional to the ionic strength (Fig.  4A). However, 
the rapid reduction in turbidity by 0.3 M CaCl2 (p < 0.05) 

could occur as a result of the interaction of calcium with 
the EF_hand motif placed on the N-terminal domain of 
caleosin. This Ca2+-binding motif responds to biotic 
and abiotic stresses and plays a role in releasing triacyl-
glycerols from oil bodies during seed germination (Pox-
leitner et al. 2006; Partridge and Murphy 2009; Shimada 
and Hara-Nishimura 2010). Although calcium caused 
sedimentation of AOBs, its low concentrations (7.5 mM) 
have been used as a divalent to cross-link oil-body pro-
teins and Pickering stabilizing (Liu et  al. 2017). It has 
been reported that the Pickering emulsions need an oil 
volume fraction (φ) of greater than 0.2 (Guo et al. 2021).

In contrast to salts, surfactants are generally considered 
to act as emulsifying agents because of reducing surface 
tension, breaking hydrophobic interactions of proteins 
and increasing elasticity, viscosity, and electronega-
tive repulsion (Sukhotu et  al. 2014). Although using 2% 
Tween 20 had no positive effect on AOB stability, adding 
0.1% SDS rendered the suspension more stable (Fig. 4B).

A comparison between the stability of AOBs at 4  °C 
and room temperature showed that the lower tempera-
tures prevent the emulsion coalescence (Fig.  4B), even 
if adding 0.1  M salts (Fig.  4C). However, sensitivity to 
divalent cations (Ca2+, Mg2+, and Zn2+) is not affected 
by temperature changes (Fig. 4C). The same results have 
been reported for emulsions containing calcium or mag-
nesium (Ramkumar et  al. 2000; Romero-Guzmán et  al. 
2020). Our further investigations indicated that AOBs 
without the chimaera protein also show the same insta-
bility towards divalent salts (data not shown). Therefore, 
the reason for emulsion instability differs depending on 
the ionic strength and oil volume fraction.

Effect of C‑ and N‑terminal fusion on uricase activity
Two chimaeras, CU and UC, were designed to study the 
effect of C- and N-terminal fusion on uricase activity. As 
shown in Fig. 5, the enzyme activity was lower in UC chi-
maeras (p < 0.05).

To evaluate the binding affinity of the chimaera pro-
teins to the uric acid, the 3D structure was modelled 
using Phyre2. Subsequently, 88% and 92% of residues 
of CU and UC were represented at > 90% confidence 
(Fig. 6). Furthermore, a docking study by default param-
eters of SwissDock revealed no binding at the expected 
points of UC chimaera. However, several binding sites 
were predicted for CU chimaera, and one of them 
included the expected residues (ΔG = − 6.97  kcal/mol). 
Indeed, uricase consists of 301 residues in which the cat-
alytic triad (T57* K10* H256) were delimited by the six 
conserved residues (R176-Q228, N254-T57, and F159) 
(Gabison et al. 2008). As it is shown in Fig. 6, most of the 
defined residues (except T57* K10*) were identified on 
CU chimaera.

Fig. 3  SDS-PAGE of purified uricase through AOB system. Three 
fractions including, AOB (lane 1), aqueous phase (lane 2 and 3), and 
soluble uricase, were resolved on SDS-PAGE. The purified uricase is 
represented after the first cycle of purification (lane 4) and after three 
times washing (lane 5)
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Conclusions
Protein purification with a history of over 200 years is 
still one of the main challenges facing scientists dur-
ing the production and study of proteins. Although 
chromatography is one of the most commonly used 
approaches for protein purification, it is associated with 
some drawbacks, including high cost, time-consuming 
and scale limitation. Compared to chromatography, the 

AOB system is an easy, fast and inexpensive method 
that is feasible for recombinant protein purification.

Although protein purification using oil bodies has 
only been reported for oleosin, we selected caleosin as 
an efficient tool in constructing nano-oil bodies (Chen 
et  al. 2004). In addition to convenient purification, 
stability and high surface absorption of the nano-oil 
bodies make them useful for immobilization and drug 

Fig. 4  Turbidity tests of AOBs at 600 nm. The measurements were conducted at room temperature and pH 7.5 unless mentioned. The constituted 
oil bodies were exposed to A salt concentrations (50–300 mM) for 15 min, B temperature and surfactants for 24 h and C 0.1 M monovalent (NaCl 
and KCl) and divalent (MgCl2, CaCl2, and ZnSO4) salts for 24 h at 4 °C and 25 °C

Fig. 5  Comparison of uricase activity of CU and UC chimaeras to investigate the effects of tag on uricase activity. A non-parametric two-sample 
Wilcoxon test was used to compare the results (p < 0.05)
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delivery of recombinant proteins like uricase. Moreo-
ver, constituted oil bodies can be used as biocompat-
ible and renewable emulsifiers in the pharmaceuticals, 
cosmetics, and food industries to retrieve other parts 
of production costs. Therefore, our procedure would be 
more cost-effective than conventional chromatography 
methods.
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