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Biohydrogen production through dark fermentation is very attractive as a solution to help mitigate the effects of
climate change, via cleaner bioenergy production. Dark fermentation is a process where organic substrates are
converted into bioenergy, driven by a complex community of microorganisms of different functional guilds. Under-
standing of the microbiomes underpinning the fermentation of organic matter and conversion to hydrogen, and
the interactions among various distinct trophic groups during the process, is critical in order to assist in the process
optimisations. Research in biohydrogen production via dark fermentation is currently advancing rapidly, and various
microbiology and molecular biology tools have been used to investigate the microbiomes. We reviewed here the
different systems used and the production capacity, together with the diversity of the microbiomes used in the dark
fermentation of industrial wastes, with a special emphasis on palm oil mill effluent (POME). The current challenges
associated with biohydrogen production were also included. Then, we summarised and discussed the different
molecular biology tools employed to investigate the intricacy of the microbial ecology associated with biohydrogen
production. Finally, we included a section on the future outlook of how microbiome-based technologies and knowl-
edge can be used effectively in biohydrogen production systems, in order to maximise the production output.
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Introduction

Dark fermentation is a biological decomposition process
reported to be one of the most promising approaches for
the treatment of organic wastes. This is also the process
commonly used in sustainable bioenergy production. A
recent study by the World Bank in 2018 predicted that the
global waste production will grow to 3.4 billion tonnes by
2050, with organic wastes generated from agricultural
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sectors representing more than 50% of the total waste
composition (Kaza et al. 2018). This large amount of
wastes has to be sustainably managed. For this purpose,
dark fermentation can offer two simultaneous benefits
of both waste treatment and sustainable bioenergy gen-
eration (Wang and Yin 2019). Methane is currently the
commonly produced bioenergy from organic wastes, but
hydrogen production is also gaining attention, as part of
the hydrogen economy, to substitute the hydrogen pro-
duced from fossil fuels. Hydrogen has three times higher
energy content (120 MJ/kg) than hydrocarbon fuels,
and its combustion is clean and carbon free, producing
only water as the by-product (Zhang et al. 2020). Dark
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fermentation is more attractive than the other biologi-
cal processes, due to the low demand for light (unlike the
photosynthetic routes), capable of high biohydrogen pro-
duction rate, environmentally friendly, versatile substrate
utilisation and less energy intensive (Ghimire et al. 2015;
Mishra et al. 2019). In addition, the use of organic wastes
as feedstocks in dark fermentative biohydrogen produc-
tion is potentially cost competitive, since organic wastes
are relatively abundant, renewable, cheap and highly bio-
degradable (Sharma et al. 2020).

Various renewable organic wastes such as sake lees,
cassava, sago, glycerol, rice straw, vegetable waste, food
waste, date seeds, sugarcane molasses, corn stover, alli-
gator weed, oil palm sap and wheat straw have been
explored as the potential substrate for dark fermentative
biohydrogen production (Chen et al. 2021; Choiron et al.
2020; Li et al. 2020; Liu et al. 2013; Moreno-Andrade
et al. 2015; Noparat et al. 2012; Oliveira et al. 2020; Panin
et al. 2020; Pason et al. 2020; Rambabu et al. 2020; Saleem
et al. 2020; Ulhiza et al. 2018; Zhang et al. 2011). Palm
oil mill effluent (POME), a wastewater generated in large
quantity during palm oil extraction process is another
renewable organic waste of interest that is currently
under intense investigations as biohydrogen production
substrate (Abdullah et al. 2020; Akhbari et al. 2021; Audu
et al. 2021; Jamali et al. 2019; Zainal et al. 2018). The use
of both pure, as well as mixed culture as the inoculum in
the dark fermentation reactor have been investigated. A
mixed culture system is generally more preferable and
practical over pure culture system, due to the diverse
microbial communities present that can rapidly degrade
a wide range of substrates. A strict aseptic condition
is also not required, making its handling easier with
cheaper cost of operation (Nitipan et al. 2014; Pachapur
et al. 2019). Nonetheless, the co-existence of biohy-
drogen producers with non-biohydrogen producers,
and biohydrogen-consumers such as methanogens and
homoacetogens in the mixed culture, makes it a very bio-
chemically complex environment. Despite the multiple
studies carried out, there is still a gap in the understand-
ing of the biological mechanisms of dark fermentation for
biohydrogen production, including the specific microbial
community and the trophic interactions (Cabrol et al.
2017; Das 2017). The methane-producing fermentation
systems are more well characterised in this aspect.

Microbiomes are classically defined as the community
consisting of microorganisms with distinct properties
and metabolic functions, interacting with its environ-
ment which results in the formation of specific ecologi-
cal niche (Whipps et al. 1988). The term “microbiome”
was often used interchangeably with “microbiota’; but
recently there has been efforts to distinguish these two.
Berg et al. (2020) defined “microbiota” as the assemblage

Page 2 of 25

of living microorganisms (i.e. the bacteria, archaea, fungi,
microalgae and the protists, excluding phages, viruses,
plasmids, prions, viroids, and free DNA), while the
“microbiomes” are the microbiota and their structural
elements, metabolites/signal molecules, and the sur-
rounding environmental conditions (Berg et al. 2020).
Phages, viruses, plasmids, prions, viroids, and free DNA
are part of the microbiomes. This review will refer to this
updated definition.

Taxonomic classification of biogas microbiomes is
often accomplished using sequence similarity searches
against 16S ribosomal RNA (rRNA) gene reference data-
bases, such as SILVA (Akhbari et al. 2021), Greengenes
(Oliveira et al. 2020), Ribosomal Database Project (RDP)
(Cho et al. 2018) or National Center for Biotechnology
Information (NCBI) (Mazareli et al. 2020). However, the
genome sequences of biogas-producing microorganisms
are underrepresented in these reference databases, which
hinder the reliable taxonomic classification for microbi-
omes present in the biogas production systems (Hassa
et al. 2018). Functional roles of biogas microbiome are
often inferred to related species in public genome data-
base based on the 16S rRNA gene sequence similarity
(Campanaro et al. 2016). Therefore, it is imperative to
have a comprehensive reference database to improve the
taxonomic annotation of biogas-producing microbiomes
across the entire microbial databases. Metagenomics has
been used in many biogas-producing studies to deci-
pher the taxonomic diversity, metabolic functions and
the physiology of biogas-producing microbiomes. This
has led to the compilation of metagenome-assembled
genomes (MAGs) belonging to the biogas-producing
microbiomes in a repository, called the “Biogasmicro-
biome” (https://biogasmicrobiome.env.dtu.dk/) (Cam-
panaro et al. 2020). This database contains a collection
of 1600 MAGs of bacterial and archaeal species that
underpin various biogas production systems, substan-
tially expanding the existing public genome databases
(Campanaro et al. 2020). In addition, Microbial Data-
base for Activated Sludge (MiDAS) Field Guide (https://
www.midasfieldguide.org/guide/search) is an ecosys-
tem-specific database for wastewater treatment systems
which aims to facilitate collaborative research and com-
pile information on the physiology and ecology of the key
microorganisms present in activated sludge wastewater
treatment systems (Mcllroy et al. 2015). MiDAS 4 offers
a comprehensive set of full-length amplicon sequence
variant (ASV)-resolved 16S rRNA gene sequences which
covers over 31,000 species, allowing researchers to dig
into the microbiome compositions of activated sludge,
anaerobic digesters and wastewater treatment systems
at the genus to species level resolutions (Dueholm et al.
2021).
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Dark fermentation for biohydrogen production is
mediated by many different groups of microorganisms, to
convert complex organic wastes into biohydrogen, vola-
tile fatty acids and carbon dioxide (CO,) (Hay et al. 2013).
The efficiency and stability of dark fermentation system
relies on the syntrophic activity of the microbial commu-
nity belonging to different functional guilds, working in
tight interaction (Cabrol et al. 2017). It has been reported
that the understanding of the species composition, spe-
cific metabolic functions, and interspecies interactions
are often more important than the species richness itself
in maintaining the overall performance of the system
(Cabrol et al. 2017). The rapid advancement of molecu-
lar tools has contributed to the major discoveries of the
diversity and structure of the biohydrogen-producing
consortia. In a mixed culture system, the microbiomes
involved are phylogenetically diverse, with multiple con-
tributions in the biohydrogen production and the break-
down of organic wastes (Cabrol et al. 2017).

This review summarises and evaluates the distinct
microbial communities present in a biohydrogen pro-
duction systems, and the molecular tools that have been
used for microbiome analysis in biohydrogen production
from industrial wastewater and POME. We also included
a future outlook of how microbiome-based technologies
and knowledge can be used effectively in biohydrogen
production systems, in order to maximise the production
output.

Microbiomes in dark fermentative biohydrogen
production

The microorganisms present in dark fermentative biohy-
drogen production system include both the biohydrogen
producers and non-producers. Biohydrogen producers
possess the ability to convert complex organic substrates
into biohydrogen in the absence of light. They can exist
as a single strain or a community of various taxa. They
can be found in a diverse environment, such as POME
sludge (Jamali et al. 2019; Mahmod et al. 2019; Zainal
et al. 2018), sludge from municipal wastewater plants
(Chang et al. 2011; Viana et al. 2019), sludge from food
waste (Li et al. 2018), cattle dung (Sen and Suttar 2012),
pig manure (Wang et al. 2011) and marine sediments (Liu
et al. 2018), many of which has been extensively studied.
In general, Clostridium (Gram positive, spore former)
and Enterobacter (Gram negative, non-spore former)
are the most common biohydrogen-producing genera
reported, for mesophilic conditions (Kumar et al. 2018).
While under thermophilic and hyperthermophilic con-
ditions, Clostridium, Thermoanaerobacterium, Thermo-
toga and Caldicellulosiruptor dominate (O-Thong 2017).
Research on biohydrogen production using the lower
temperature-adapted psychrophiles and psychrotrophs
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are still somewhat limited (Alvarado-Cuevas et al. 2015;
Mohammed et al. 2018). In addition, other genera includ-
ing Bacillus, Ethanoligenens, Klebsiella, Citrobacter and
Escherichia also frequently reported as the biohydrogen
producers. Non-biohydrogen producers on the other
hand, could interfere with the overall biohydrogen yield,
by either consuming the hydrogen produced, competing
with the biohydrogen producers for substrates, or inhibit
biohydrogen producers with their produced metabo-
lites which eventually decrease the efficiency of the bio-
hydrogen production system as a whole (Cabrol et al.
2017). Inoculum pre-treatment has become necessary
in mixed culture systems in order to selectively enrich
the biohydrogen producers and inactivate the hydrogen
consumers.

The main biochemical pathways in dark fermentation
overlaps with those of anaerobic digestion, where diverse
microbial communities synergistically work together to
ensure a stable degradation of organic substrates (Aben-
droth et al. 2015; Stolze et al. 2016). The pathways can
be divided into four phases: hydrolysis, acidogenesis,
acetogenesis, and methanogenesis (Fig. 1). In anaerobic
digestion, hydrogen (H,) is produced during acidogen-
esis and acetogenesis, by hydrolytic and fermentative
bacteria. It is later consumed during methanogenesis,
when methanogenic archaea use H, and CO, to produce
methane (CH,) (Hassa et al. 2018). Therefore, inhibition
of methanogenesis is necessary to re-direct the pathway
for hydrogen production, through the final step of dark
fermentation. The initial hydrolysis starts when the com-
plex substrates (polysaccharides, lipids, and proteins)
are hydrolysed to monomers (sugars, amino acids, fatty
acids) by the actions of extracellular hydrolytic enzymes
such as cellulase, pectinase, lipase and protease. The
microbial taxa responsible for the hydrolytic activities are
mainly represented by two phyla, Firmicutes and Bacte-
roidetes, from the genera Clostridium and Bacteroides.
The abundance of these phyla can be attributed to their
degradative abilities, as the main degraders of cellulo-
lytic materials (Abendroth et al. 2015). Members of these
phyla are also known to be fast growers, utilising the
hydrolysed products for growth through fermentation,
and are usually present in the whole degradation pro-
cess. They are also less sensitive to changes in environ-
mental conditions (Li et al. 2017; Wang et al. 2018). The
hydrolysis step is usually not a rate-limiting step, except
with recalcitrant substrates such as lignocellulosic waste,
which usually results in incomplete hydrolysis requiring a
pre-treatment step (Menzel et al. 2020).

Next, in acidogenesis, the hydrolysed products are fur-
ther metabolised to H,, CO,, and short-chain fatty acids
(SCFA) (e.g. acetate, butyrate, formate, propionate, etc.)
by acidogenic microbial communities. The predominant
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Fig. 1 Key enzymes and dominant microbial taxa involved during anaerobic digestion of organic matter

phyla associated with this phase are Bacteroidetes, Firmi-
cutes, Chloroflexi, and Proteobacteria (Audu et al. 2021;
Castellano-Hinojosa et al. 2018). Acidogenesis is usually
a rapid process, accompanied by the accumulation of
SCFA and the subsequent drop in pH. The microorgan-
isms in the acidogenic phase consist of both facultative
and obligate anaerobes and are often referred to as aci-
dogens, or acid formers. The commonly reported genera
participating in this phase are Clostridium, Bacteroides,
Bifidobacterium, Bacillus, and Streptococcus (Gonzalez-
Martinez et al. 2016; Seon et al. 2014). In this phase, car-
bohydrates (mostly glucose, the preferred substrates) are
converted to pyruvate through the glycolytic pathway
(Saravanan et al. 2021; Vardar-Schara et al. 2008). Under
mesophilic condition, the H,-yielding fermentation
routes are the obligate anaerobic (Clostridium type) and
facultative anaerobic (Enterobacteria type) fermentation
route.

In the facultative anaerobic fermentation route, pyru-
vate is further converted to acetyl-CoA and formate, by
pyruvate formate lyase (PFL), and H, is produced from
formate by the formate hydrogen lyases enzyme com-
plex. The strict anaerobic fermentation route involves
the oxidisation of pyruvate to acetyl-CoA and reduced
ferredoxin (Fd) by pyruvate ferredoxin oxidoreduc-
tase (PFOR). H, is then released from the reduced Fd
by the action of hydrogenase. Additional molecules
of H, can also be produced from the oxidisation of

nicotinamide adenine dinucleotide (NADH) to reduced
Fd by NADH:ferredoxin oxidoreductase (NFOR), fol-
lowed by the subsequent release of H, from the reduced
Fd by hydrogenase (Fig. 2). However, the activities of
NFOR is usually inhibited under standard conditions and
can only proceed when H, partial pressure is very low, as
opposed to PFOR which is still active at standard H, par-
tial pressure (Kraemer and Bagley 2007). In addition to
H,, acetyl-CoA can also be further converted to non-gas-
eous products including SCFA (acetate, lactate, butyrate,
propionate), alcohols (ethanol, butanol), and ketones
(acetone). The overall theoretical maximum yield of H,
from the reduced Fd pathway is 4 mol of H, per 1 mol of
glucose, and 2 mol of H, per 1 mol of glucose from the
formate pathway. The yield is influenced by the fermenta-
tion end products generated alongside H,. Theoretically,
based on the “Thauer limit, the maximum yield of 4 mol
of H, can be obtained with acetate as the fermentation
end product, 2 mol with butyrate or propionate, and
much lower yields when alcohols are the end products
(Keskin et al. 2019; Vardar-Schara et al. 2008).

The intermediates products H, CO,, and acetate
can directly be utilised by methanogens for methane
production, while other products such as butyrate,
propionate, valerate require further transformation
or conversion through syntrophic acetogenesis first
(Lim et al. 2020). In the acetogenesis phase, unus-
able substrates are converted to acetate, CO,, and H,
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by hydrolytic and fermentative bacteria that do not
possess hydrolytic activities. Acetogenesis is also the
rate-limiting phase. In addition, the H, produced from
acetogenesis is converted to CH, by the hydrogeno-
trophic methanogens (Venkiteshwaran et al. 2015). The
oxidation of non-gaseous products of acidogenesis is
based on the reverse electron transfer process, a ther-
modynamically unfavourable condition. The process
requires energy input to drive the oxidation/reduc-
tion process involving multiple enzyme systems, such
as formate dehydrogenases, ferredoxin:NAD oxidore-
ductases, hydrogenases, reactive quinone complexes,
c-type cytochromes, etc. (Sieber et al. 2012). However,
when oxidation is coupled with methane production,
energy conversion is more feasible due to the dimin-
ishing effects of H, pressure created by the methano-
genic activity (Sikora et al. 2017). The most commonly
reported syntrophic acetogens in anaerobic digester are
the propionate degraders belonging to the genera Pelo-
tomaculum, Smithllela, and Syntrophobacter. While the
oxidation of butyrate and other fatty acids is carried
out by Syntrophus and Syntrophomonas (Venkitesh-
waran et al. 2015). The acetogenesis phase is important
because it ensures rapid and stable anaerobic digester

operation by preventing methanogenic inhibition due
to the high acid concentrations (Wang et al. 2018).
Methanogenesis is the final phase in anaerobic diges-
tion, in which acetate, H, and CO, produced from the aci-
dogenic and acetogenic phases are further transformed
into biogas, in the form of CH, and CO,. Methanogens
are the main hydrogen consumers in the anaerobic envi-
ronments, and for this reason they are usually suppressed
in biohydrogen dark fermentation to maximise the
hydrogen yield. Unlike the previous three phases which
are dominated by fermentative bacteria, the methanogen-
esis phase is exclusively dominated by the methanogenic
archaea. The methanogens are slow growers and sensitive
to environmental changes. Methanogenesis can occur via
three possible pathways based on the available substrate:
acetoclastic, methylotrophic, or hydrogenotrophic meth-
anogenesis. Acetotrophic/acetoclastic methanogens use
acetate as substrate by catalysing its methane production,
methylotrophic methanogens use methyl-based com-
pounds, and hydrogenotrophic methanogens use CO,
and H, for CH, production (Hassa et al. 2018; Lim et al.
2020; Menzel et al. 2020). The commonly observed meth-
anogens associated with biogas production are from the
genera Methanosaeta and Methanosarcina (acetotrophic
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methanogens); and  Methanobacterium, Methano-
spirillum, Methanococcus, and Methanobrevibacter
(hydrogenotrophic methanogens) (Castellano-Hinojosa
et al. 2018). The acetotrophic methanogens have been
reported to be the most predominant type of methano-
gen in anaerobic digesters, and are responsible for about
70% of the methane generated (Gonzalez-Martinez et al.
2016). The genus Methanosaeta for example, are obligate
acetoclastic methanogens, characterised as slow grow-
ers, and only use acetate as the substrate. While Metha-
nosarcina are facultative acetoclastic methanogens, have
faster growth rate, and can utilise a wider substrate range
in addition to acetate. Unlike Methanosaeta, members of
the Methanosarcina genus have a low affinity to acetate,
which can account for its abundance in high acetate con-
centration condition by outgrowing the Methanosaeta
population. At low acetate concentration, Methanosaeta
have been reported to dominate the archaea community.
Due to their high affinity to acetate, Methanosaeta genus
outcompete Methanosarcina population by utilising the
available acetate in the environment (Conklin et al. 2006;
Lim et al. 2020).

The intricacy and complexity of dark fermentation
makes it a process “black box”, due to the variety of mul-
tiple metabolic activities and interactions within the
microbial community, along with the limited biogas-pro-
ducing microbial genomes in the reference databases. So
far, biohydrogen yield obtained in practice are mostly up
to 32%, hampered by the Thauer limit (Patel et al. 2018).
In addition, biohydrogen production from dark fermen-
tation of organic wastes seldom exceeded 2 mol H,/mol
hexose (Wang and Yin 2019). A number of approaches
have been explored to overcome the bottleneck of dark
fermentative biohydrogen production, including reac-
tor configurations, operational condition, inoculum and
substrate types, pre-treatment strategies and integrating
multiple biohydrogen production systems (Audu et al.
2020). The microbiomes of the systems are the integral
part of these processes. Identifying the microorganisms
and understanding the behaviour is crucial to dark fer-
mentation robustness, as elaborated in sections "Indus-
trial wastes as substrates” and "Palm oil mill effluent
(POME) as substrate”.

Industrial wastes as substrates

Dark fermentative biohydrogen production has been
investigated using a diverse range of pure cultures
(Table 1). Clostridium butyricum represents the most
commonly studied pure culture under mesophilic con-
dition. C. butyricum is known for its high biohydrogen
yield regardless of the substrates complexity, which
can range from simple carbohydrates such as glucose,
xylose and sucrose, to complex biomass such as food
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waste (Kanchanasuta et al. 2017), glycerol (Kivisto et al.
2013; Yin and Wang 2017), microalgae (Ortigueira et al.
2015) and sugarcane bagasse (Plangklang et al. 2012).
At present, the highest reported biohydrogen yield
from the conversion of organic waste by C. butyricum
was 3.0 mol H,/mol glycerol which is equal to 3.6 mol
H,/mol hexose out of the theoretical stoichiometric
yield (4 mol H,/mol hexose, the Thauer limit) when
fermenting raw glycerol from biodiesel production pro-
cess (Kivisto et al. 2013). In addition, other Clostridia
species including C. beijerinckii (Rambabu et al. 2021),
C. pasteurianum (Sarma et al. 2019), C. acetobutyli-
cum (Azman et al. 2016) and C. saccharoperbutylace-
tonicum (Dada et al. 2013) have also been investigated
for biohydrogen production from organic wastes under
mesophilic condition. Under thermophilic conditions,
C. thermocellum has been reported to be the ideal
strain. Rambabu et al. (2020) obtained 103.97 mmol
H,/L using C. thermocellum to produce biohydro-
gen from date seeds waste through dark fermentation
system operated at 50 °C and initial pH 7. Tian et al.
(2015) also used C. thermocellum to ferment sugarcane
bagasse at 55 °C and obtained 4.89 mmol H,/g medium
added. Versatile substrate utilisation with high bio-
hydrogen yields of 0.23-3.47 H,/mol hexose from C.
butyricum and 0.52-3.0 mol H,/mol hexose from the
other Clostridium species have made Clostridia popu-
lar for use in dark fermentation (Wang and Yin 2019).
However, the strict anaerobic requirement of Clostridia
complicates their practical applications.

Facultative anaerobes such as Enterobacter, Klebsiella,
Citrobacter, Escherichia and Bacillus are the alternative
candidates for biohydrogen dark fermentation. These
species possess the ability to shift from aerobic respira-
tion producing adenosine triphosphate (ATP) in the
presence of oxygen, to fermentation in the absence of
oxygen (Lukajtis et al. 2018). Nevertheless, facultative
anaerobes generally produce lower biohydrogen yield
than the strict anaerobes, e.g. Clostridia, but the high tol-
erance to oxygen makes them more attractive for practi-
cal applications. Pure cultures have commonly been used
for investigations on biohydrogen production and the
related metabolic activity. This allows the investigation
into the metabolic pathways involved, and subsequently
the feasible ways to enhance the biohydrogen production
efficiency through metabolic engineering (Wang and Yin
2019). In addition, reliable biohydrogen yields by avoid-
ing the production of undesired by-products, reproduc-
ible bioprocess and ease of genetic manipulations are the
other benefits of using pure cultures (Kumar et al. 2018).
However, aseptic condition is compulsory to handle pure
cultures as they are highly susceptible to contaminations.
They are also substrate selective, and developing pure
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Table 1 Dark fermentative biohydrogen production from various substrates (including industrial wastes) using pure culture

Microorganism Substrate Reactor type Operating conditions Biohydrogen yield References
Temperature, T pH

Clostridium butyri- Glucose Batch 35°C Initial=7.0, 2.24 mol H,/mol Yin and Wang (2017)
cum INET 1 Operation=uncon-  hexose

trolled
Clostridium butyri- Xylose Batch 35°C Initial =7.0, 1.23 mol H,/mol Yin and Wang (2017)
cum INET 1 Operation=uncon- hexose

trolled
Clostridium butyri- Sucrose Batch 35°C Initial=7.0, 1.44 mol H,/mol Yin and Wang (2017)
cum INET 1 Operation=uncon-  hexose

trolled
Clostridium butyri- Lactose Batch 35°C Initial=7.0, 1.83 mol H,/mol Yin and Wang (2017)
cum INET 1 Operation=uncon- hexose

trolled
Clostridium butyri- Starch Batch 35°C Initial=7.0, 2.17 mol H,/mol Yin and Wang (2017)
cum INET 1 Operation=uncon-  hexose

trolled
Clostridium butyri- Glycerol Batch 35°C Initial=7.0, 0.67 mol H,/mol Yin and Wang (2017)
cum INET 1 Operation=uncon- hexose

trolled
Clostridium butyri- Food waste CSTR 37°C Initial =6.0, 362 mLH,/g Vs Kanchanasuta et al.
cumTISTR 1032 Operation =uncon- (2017)

trolled
Clostridium butyri- Microalgae Batch 37°C ND 2.74 mol H,/mol Ortigueira et al. (2015)
cum DSM 10,702 glucose
Clostridium butyri- Glucose TBSBR 30°C Initial =5.2, 1.67 mol H,/mol Puhulwella et al.
cum CWBI 1009 Operation=5.2 glucose (2014)
Clostridium butyri- Glycerol Batch 37°C Initial =74, 3.0 mol H,/mol Kivistd et al. (2013)
cum Operation=uncon-  glycerol

trolled
Clostridium butyri- Glucose ANnSBR 30°C Initial =7.6, 2.2 mol H,/mol Beckers et al. (2013)
cum CWBI 1009 Operation=uncon-  glucose

trolled
Clostridium butyri- Glucose ABR 30°C Initial =8.5, 2.49 mol H,/mol Laurentetal. (2012)
cum CWBI 1009 Operation=uncon-  glucose

trolled
Clostridium butyri- Sugarcane bagasse  Serum bottle 37°C Initial=6.5, 1.52 mol H,/mol Plangklang et al.
cumTISTR 1032 Operation=6.5 hexose eq (2012)
Clostridium beijer- Rice mill wastewater Serum bottle 37°C Initial=7.0, 2149 mL H,/L Rambabu et al. (2021)
inckii DSM 791 Operation =uncon-

trolled
Clostridium beijer- Oil palm sap Serum bottle 30°C Initial=7.0, 141 mL H,/g sub- Noparat et al. (2012)
inckii PS-3 Operation=uncon-  strate

trolled
Clostridium pasteuri-  Glycerol Serum bottle 37°C Initial =7.0, 1.10 mol H,/mol Sarma et al. (2019)
anum DSM 525 Operation=7.0 glycerol
Clostridium pasteu- Glucose Serum bottle 35°C Initial=7.0, 2.2 mol H,/mol Hsieh et al. (2016)
rianum Operation=uncon-  xylose

trolled
Clostridium BOH3 Fruit waste Serum bottle 37°C Initial =6.8, 35997 mLH,/gTS Mahato et al. (2020)

Operation=uncon-  utilised

trolled
Clostridium ther- Date seeds Serum bottle 50°C Initial=7.0, 103.97 mmol H,/ L Rambabu et al. (2020)
mocellum ATCC Operation =uncon-
27,405 trolled
Clostridium acetobu-  Rice bran Batch 34°C Initial =5.5, 117.24 mL H,/g Azman et al. (2016)
tylicum YM1 Operation=uncon-  sugar.ysumed

trolled
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Table 1 (continued)
Microorganism Substrate Reactor type Operating conditions Biohydrogen yield References

Temperature, T pH

Clostridium ther- Sugarcane bagasse  Serum bottle 55°C
mocellum ATCC

27,405

Clostridium saccha-  Rice bran Batch 30°C
roperbutylacetoni-

cum N1-4

Clostridium tyrobu-  Glucose CSTR 35°C
tyricum Fya102

Enterobacter aero- Aquatic weed Batch 37°C
genes ZJU1

Enterobacter asburiae Lactose Batch 256 °C
Enterobacter aero- Sago wastewater Serum bottle 31°C
genes CDC 819-56

Enterobacter aero- Rice straw Serum bottle 37°C
genes PTCC 1221

Enterobacter cloacae  Distillery effluent Serum bottle 37°C
IIT-BT 08

Bacillus cereus Wheat straw Batch 37°C
Ethanoligenens Glucose Serum bottle 36 °C
harbinense B49

Ethanoligenens har-  Glucose Batch 35°C
binense YUAN-3

Escherichia coli Glucose Serum bottle 37°C
Janthinobacterium Glucose Serological bottle 25 °C
agaricidamnosum

Polaromonas Glucose Serological bottle 25 °C
Jejuensis

Klebsiella pneumo- Brewery wastewater AnBBR 35-36°C
niae

Klebsiella pneumo- Glycerol Batch 39°C

niae BLbO1

Initial =6.6,
Operation =uncon-
trolled

Initial =6.0,
Operation =uncon-
trolled

Initial =6.0,
Operation=6.0
Initial =6.0,

Operation =uncon-
trolled

Initial=7.2,
Operation =uncon-
trolled

Initial =6.8,
Operation=uncon-
trolled

Initial =5.8,
Operation=5.8
Initial =7.5,

Operation =uncon-
trolled

Initial=7.5,
Operation =uncon-
trolled

Initial =6.5,
Operation =uncon-
trolled

Initial=7.0,
Operation=4.5

ND

Initial=6.5,
Operation =uncon-
trolled

Initial =6.5,
Operation =uncon-
trolled

Initial =5.5,
Operation =uncon-
trolled

Initial =9.0,
Operation =uncon-
trolled

4.89 mmol H,/g
medium,ggeq

3.37 mol H,/mol
SU9arconsumed

1.06 mmol H,/mmol
glucose

622 mLH,/gVs

1.19 mol H,/mol
lactose

742 mmol H,/mol
glucose

19.73 mL H,/g straw

7.38 mol H,/kg
coD

reduced

1564 mL H,/g VS

113.5 mmol H,/L

2.62 mol H,/mol
glucose

2.0 mol H,/mol
glucose

0.86 mol H,/mol
glucose

1.57 mol H,/mol
glucose

0.80-1.67 mol H,/
mol glucose

45.0 mol %

Tian et al. (2015)

Dada et al. (2013)

Whang et al. 2011)

Song et al. (2020)

Alvarez-Guzman et al.
(2020)

Ulhiza et al. (2018)

Asadi and Zilouei
(2017)

Mishra and Das (2014)

Saleem et al. (2020)

Xuetal. (2016)

Zhang et al. (2015)
Bisaillon et al. (2006)

Alvarado-Cuevas et al.
(2015)

Alvarado-Cuevas et al.
(2015)

Estevam et al. (2018)

Costa et al. (2011)

ABR: anaerobic biodisc reactor; AnBBR: mechanically stirred anaerobic reactor; AnSBR: anaerobic sequenced-batch reactor; CSTR: continuous stirred tank reactor;
TBSBR: trickling-bed sequenced-batch reactor; ND: no data; COD: chemical oxygen demand; TS: total solid; VS: volatile solid

cultures to reach the optimal production period can be
time consuming (Kumar et al. 2018).

Mixed cultures have also been widely used (Table 2).
Inoculum pre-treatment is necessary in a mixed culture
system to enhance biohydrogen production yield by sup-
pressing the activity of competing species, such as the
biohydrogen-consumers and substrates competitor. Dif-
ferent pre-treatment methods will result in different

starting microbial community structures. Zhang et al.
(2011) investigated the effects of five different inoculum
pre-treatment methods on mixed culture of aerobic seed
sludge to enhance biohydrogen production from corn
stover hydrolysate. Inoculum with no pre-treatment is
composed of complex microbial community mainly rep-
resented by Enterobacter sp. and Pantoea sp. Pre-treat-
ment using heat achieved the highest biohydrogen yield,
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with the microbial community in the fermentation sys-
tem dominated by C. bifermentans. Pre-treatment using
base, acid, ultrasonic disruption and ultraviolet radiation
favours facultative anaerobes, such as E. aerogenes, Kleb-
siella, Pectobacterium and E. coli. Heat pre-treatment is
the commonly used inoculum pre-treatment method
under mesophilic conditions (Table 2). It is usually selec-
tive to spore-forming species such as Clostridia, and
inhibits other non-spore formers. In general, the use of
mixed culture in dark fermentation has been shown to be
promising, and it offer high hydrogen evolution rate and
yields (Pachapur et al. 2019). However, understanding the
metabolic complexities and process kinetics taking place
within undefined microbiome systems are challenging.

Artificial microbial consortia containing selected
microorganisms with specific metabolic or ecological
functions has been shown to overcome the limitations
of wild type and undefined microbiomes (Ergal et al.
2020). Recently, precision design of an artificial micro-
bial consortia consisting E. aerogenes and C. acetobu-
tylicum yielded 5.6 mol H,/mol glucose. This was the
highest biohydrogen yield reported so far, 40% beyond
the Thauer limit (Ergal et al. 2020). The finding suggests
that constructing a desired microbial consortium with
well-studied biohydrogen-producing species will enable
a comprehensive understanding of the microbial inter-
actions, ease the control and balancing the effects of any
perturbations. This will ultimately create a more efficient
and robust engineered system.

Palm oil mill effluent (POME) as substrate
POME is the wastewater produced in large quan-
tity during palm oil processing. It contains substantial

Page 14 of 25

amount of organic material, suspended solids, and oil
and greases. Despite its nontoxic nature, POME is cat-
egorised as extremely high strength wastewater, which
is 100 times more polluted than municipal sewage, and
require effective treatment before discharge into the
environment (Chia et al. 2020). Raw POME appears as
thick brownish high colloidal suspension liquid mixture
with a distinct offensive odour (Chia et al. 2020). It is
characterised by high biological oxygen demand (BOD)
(10, 250-80, 400 mg/L), high chemical oxygen demand
(COD) (15,000-100,000 mg/L), high oil and grease con-
tent (130-18,000 mg/L), high suspended solids (5000—
54,000 mg/L), high discharge temperature (50—-90 °C) and
is acidic (pH 3.4-6.9) (Audu et al. 2020). POME is rich
with organic materials containing cellulose (11%), hemi-
cellulose (7%) and lignin (42%) (O-Thong et al. 2012).
Given the high organic matter properties, recent POME
treatment methods are coupled with bioenergy produc-
tion and other value-added products, such as solvents,
biomethane and biohydrogen.

Clostridia is the most commonly used genera for bio-
hydrogen production from POME. C. butyricum has
been used in several studies as pure culture inoculum for
mesophilic batch biohydrogen production from POME
via dark fermentation (Table 3). Singh et al. (2013b)
observed that biohydrogen yield increased 1.5- to 2-fold
when using an acclimatised immobilised C. butyricum.
The immobilised cells recorded a biohydrogen yield of
5350 mL H,/L POME with maximum biohydrogen pro-
duction rate of 510 mL H,/L. POME/h. This species has
also been reported to be the dominant biohydrogen pro-
ducer in POME fermentation using mixed culture (Yos-
san et al. 2012) (Table 4). The effects of mesophilic and

Table 3 Dark fermentative biohydrogen production from POME using pure culture

Inoculum Reactor type Operating conditions

Biohydrogen yield References

Temperature, T pH

Clostridium beijjerinckii Hungate tube 30°C

Initial=7.0,

4620 mL H,/L medium Rosa et al. (2020)

Operation = uncontrolled

Bacillus anthracis PUNAJAN 1 CSTR 35°C

Initial=6.5,

236 ml H,/g COD Mishra et al. (2017)

Operation = uncontrolled

Escherichia coli Serum bottle 37 °C Initial =8.5, 0.66 mol H,/mol total monomeric Taifor et al. (2017)
Operation=uncontrolled sugars

Clostridium LS2 UASB 37°C Initial =5.5, 380 mL H,/g COD Singh et al. (2013b)
Operation=5.5

Clostridium butyricum EB6 Batch 37°C Initial=5.5, 5350 mL H,/L POME Singh et al. (2013¢)
Operation=5.5

Clostridium butyricum Batch 37°C Initial=7.0, 2.18 mol H,/mol total carbohydrate ~ Kamal et al. (2011)
Operation=5.5

Clostridium butyricum EB6 Batch 37°C Initial=5.5, 3195 mL H,/L POME Chong et al. (2009)

Operation=5.5

CSTR: continuous stirred tank reactor; UASB: up-flow anaerobic sludge blanket reactor; COD: chemical oxygen demand; POME: palm oil mill effluent
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thermophilic conditions were also investigated, using
anaerobic sludge as inoculum. Higher biohydrogen yield
was achieved from mesophilic fermentation (27.09 mL/g
COD) while higher biohydrogen production rate was
achieved under thermophilic condition (49.34 mL H,/L
POME/h). Microbial community analysis performed
showed that Clostridia dominated all the biohydrogen
production systems operated at 25, 37, 45 and 55 °C.

Different Clostridium species exhibit different met-
abolic activities, and their relative abundance vary
depending on the operational conditions. Yossan et al.
(2012) found that C. paraputrificumn is the dominant
member of the biohydrogen-producing community
under all temperatures. In this study, C. butyricum
was detected in the biohydrogen reactor operated at
37-55 °C, whereas C. beijerinckii and C. hydrogenifor-
mans were only present at 37 °C. Biohydrogen produc-
tion reactor at thermophilic condition was dominated
by C. thermopalmarium, a non-cellulolytic biohydrogen-
producing bacteria (Yossan et al. 2012). In another study,
C. sensu stricto contributed 800 mL H,/g COD_,,cumed
of biohydrogen yield when treating POME with anaero-
bic sludge in up-flow anaerobic sludge blanket fixed-film
(UASFF) reactor operated at 37 °C with the total abun-
dance of 69.55% in the system (Akhbari et al. 2021). C.
celerecrescens was the dominant biohydrogen producer in
up-flow anaerobic sludge blanket (UASB) reactor using
POME substrate operated under thermophilic condition
(Mahmod et al. 2019). Clostridia can also be the main
biohydrogen producers even though they do not domi-
nate the whole community. Badiei et al. (2012) performed
microbial community analysis on the anaerobic sludge of
an anaerobic sequencing batch reactor (ASBR) operating
under mesophilic temperature. 940 mL H,/g COD, ., oved
of biohydrogen was obtained in this system. Only 20%
of the relative microbial abundance were represented by
Clostridia. The community was dominated by Strepto-
coccus (50% relative abundance) and Lactobacillus (30%
relative abundance), and the biohydrogen yield was com-
parable with the yield obtained by Akhbari et al. (2021)
in a reactor dominated by Clostridium. This suggests that
Clostridia does not have to dominate the system in order
to obtain a high biohydrogen production yield. Deep
metagenomics sequencing can help reveal the syntrophic
relationship that may exist between Clostridia and the
other genera not known to be the biohydrogen produc-
ers, and the connections between the different communi-
ties at different trophic levels in the reactor.

Tools for biohydrogen microbiome analysis

Biohydrogen production through dark fermentation from
organic wastes, including POME, is a complex biochemi-
cal process, carried out by microbial communities with a
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range of relationships between them. Dark fermentation
can be divided into four key stages which are hydrolysis,
acidogenesis, acetogenesis and methanogenesis (sec-
tion "Microbiomes in dark fermentative biohydrogen
production”). Methanogenesis is often suppressed and
undesired in biohydrogen production. These processes
occur synergistically in a successive manner and each
stage is facilitated by a distinct guild of microorganisms.
A robust and efficient dark fermentation system requires
a delicate balance of microbial population dynamics and
metabolic activities among different guilds or trophic
groups of the biohydrogen-producing microbiomes.
Understanding of the microbial ecology of the dark fer-
mentation process can help to improve the performance
towards maximising biohydrogen production, and ensure
that this process is economically feasible.

A range of techniques have been used in characteris-
ing the complex biohydrogen-producing microbial com-
munities, from conventional cultivation-dependent
approaches to cultivation-independent approaches. The
advanced multi-omics technologies are also increas-
ingly being use for this purpose. Cultivation-dependent
method have contributed in the discovery of many key
microbial species in biohydrogen-producing bioreactors
from organic industrial waste and POME (Alvarado-
Cuevas et al. 2015; Harun et al. 2012; Hsieh et al. 2016;
Mishra et al. 2017; Noparat et al. 2012; Singh et al. 2014;
Yin and Wang 2017; Zhang et al. 2015). While economi-
cal and a generally useful method to shed light on some
key members, not many can be characterised this way,
particularly when a system-based approach is required.
Some key taxa also have their syntrophic partners
belonging to different functional guilds (Lim et al. 2020).
This method is further limited by species-specific mor-
phological variations since some microorganisms share
similar morphological, physiological or biochemical
characteristics which makes the classification challeng-
ing (Lim et al. 2020). While cultivation method might be
time consuming and labour intensive, it is the only tech-
nique to characterise a specific strain in detail. Current-
omics technologies also require more reference genomes
to evaluate the biohydrogen-producing microbiomes
sequence data. Therefore, culture-dependent method
will remain essential for studying the microbial diver-
sity in biohydrogen-producing microbiomes. Recently,
novel biohydrogen-producing bacteria, Clostridium sar-
tagoforme NASGE 01 and Enterobacter cloacae NASGE
02 were isolated from sago industrial effluent using this
method (Nizzy et al. 2020).

Advancement in molecular biology and DNA sequenc-
ing techniques has enabled various culture-independent
methods to be used to study the microbiomes in bio-
hydrogen-producing reactors. Denaturing gradient gel
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electrophoresis (DGGE) and single-strand conforma-
tion polymorphism (SSCP) are among the microbiome
fingerprinting techniques used to evaluate and compare
different microbiomes in dark fermentation from organic
wastes and POME. Both techniques involve polymerase
chain reaction (PCR) amplification of a hypervariable
region of the 16S rRNA gene and migration of the PCR
product fragments on polyacrylamide gel that will pro-
vide different banding patterns, which reflect the struc-
ture of microbial communities and species abundance.
Using PCR-DGGE, the genus Megasphaera sp. was iden-
tified as the main biohydrogen producer with 14% relative
abundance, in thermophilic dark fermentation reactor of
sugarcane stillage inoculated with granular sludge of a
sugarcane stillage treatment plant. Clostridia were not
detected in this system (Santos et al. 2014). While in
dark fermentative biohydrogen production of beer lees
inoculated with non-pre-treated garbage compost, using
PCR-DGGE, C. roseum was found to be the prevalent
biohydrogen producers in all high biohydrogen-produc-
ing batch fermentations, whereas C. perfringens and C.
sporogenes were detected in low biohydrogen-producing
batch fermentations (Bando et al. 2013). The presence
of Bifidobacterium spp. and Lactobacillus spp. inhibited
biohydrogen production through substrate competition
with biohydrogen producers. Biohydrogen-producing
species such as C. butyricum and C. tyrobutyricum were
also found as the substrate competitors in biohydro-
gen fermenter dominated by C. pasteurianum (Lin et al.
2011). When POME was used as substrate, PCR-DGGE
is still among the commonly used methods in studying
the biohydrogen-producing microbiomes. The genus
Thermoanaerobacterium, such as T. thermosaccharolyti-
cum, was often reported as the main biohydrogen pro-
ducers in thermophilic POME dark fermentation using
POME anaerobic sludge as inoculum source (Jamali et al.
2019; Khongkliang et al. 2019; Maaroff et al. 2019).

The use of SSCP to investigate biohydrogen-producing
microbial community structure is still limited. Using
SSCP, operational pH of a continuous stirred tank reactor
(CSTR) fed with glycerol was found to change the struc-
ture of the dominant microbial populations (Silva-Illanes
et al. 2017). Hydraulic retention time (HRT) changed
the metabolic pattern and the composition of subdomi-
nant microorganisms such as Enterococcus, Prevotella,
Sutterella, Pseudomonas and Acinetobacter, ultimately
affecting the ability of the consortium to produce biohy-
drogen. In general, DGGE and SSCP are not quantitative,
more labour intensive, time consuming, prone to PCR
biases and has low resolution in complex microbiome
profiles (Kumar et al. 2018). Nevertheless, these micro-
biome fingerprinting techniques could remain useful for
quick screening purposes, and to acquire a glimpse of
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biohydrogen-producing microbiomes from a large num-
ber of samples.

Quantitative PCR (qPCR) has also been used in study-
ing several biohydrogen reactors using organic wastes
(including POME) as substrates, to quantify the changes
of specific microbial populations (Lay et al. 2010; Leafio
et al. 2012; Pugazhendhi et al. 2017). In contrast to the
common PCR which is qualitative, qPCR can accurately
quantify the copy number of genes of interest in a sam-
ple by measuring the fluorescence of a specific probe
used for amplification (Lim et al. 2020; Tolvanen and
Karp 2011). This technique eliminates post-PCR target
analysis, cheaper and offers a fast, accurate and sim-
ple approach for high-throughput analysis (Nurmi et al.
2002). Individual taxa or guilds in biohydrogen micro-
biomes can also be quantified using fluorescent in situ
hybridisation (FISH) technique. In FISH, cells of interest
is hybridised with a specific fluorogenic oligonucleotide
probes and its relative abundance is then measured by
quantifying the ratio of the hybridised cells to the total
cell count using a fluorescence microscope. FISH probes
Tbm1282, Ccs432 and Tbmthsacl184 specific for detec-
tion of Thermoanaerobacterium, Caldicellulosiruptor and
T. thermosaccharolyticum have been designed and used
to assess the microbial composition in thermophilic and
extreme thermophilic biohydrogen-producing reactors
fed with POME, lignocellulosic hydrolysate and synthetic
sugars (O-Thong et al. 2008). FISH overcomes the limi-
tations of PCR-based molecular techniques. Neverthe-
less, cell hybridisation is time consuming, making FISH
less suitable for high-throughput community struc-
ture investigation (Ravenschlag et al. 2001). Detection
of novel microorganisms may also be challenging, the
probe design and selection require some information on
the community structure prior to the analysis (Lim et al.
2020).

High throughput next generation -omics technologies
are increasingly being employed to better understand the
complex microbiomes driving dark fermentative biohy-
drogen production. Amplicon sequencing, metagenomics
and metaproteomics have all been employed in this con-
text. Amplicon sequencing also known as metaprofiling
is a culture-independent technique to profile the taxo-
nomic diversity, structure and composition of a microbi-
ome based on a marker gene (Escobar-Zepeda et al.
2015). 16S rRNA genes have been exclusively used as a
marker gene for library preparation through PCR ampli-
fication in studies of microbial communities, including
biogas-producing microbiomes (Sharpton 2014; Tonge
et al. 2014). Using amplicon sequencing method, bio-
hydrogen production using sake lees was found to be
enhanced when the microbial community in the sys-
tem changed from Bacillus muralis and B. cereus as the
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dominant taxa, to Pantoea agglomerans, C. acetobu-
tylicum and C. butyricum (Choiron et al. 2020). Besides,
with amplicon sequencing, Sporolactobacillus was the
dominant taxa with relative abundance 97% in the fer-
mentation of POME using microbial consortia from
sugarcane cultivation soil (Rosa et al. 2020). Sporolacto-
bacillus is an anaerobic facultative bacterium producing
lactic acid. Although its role in biohydrogen production
is unknown, its metabolic by-products could be used as
substrates for biohydrogen production by other micro-
organisms. Amplicon sequencing is commonly done on
an Illumina MiSeq platform (Akhbari et al. 2021; Audu
et al. 2021; Martinez-Burgos et al. 2020; Yang and Wang
2019) while Ion Torrent platform has also been used in
several studies (Cho et al. 2018; Oliveira et al. 2020). A
few studies have also attempted to predict the commu-
nity functions from amplicon sequencing of biohydrogen
microbiomes using bioinformatic tools, such as PICRUSt
(Li et al. 2020; Yin and Wang 2021) mostly using other
organic wastes. So far, this has not been reported for
POME. Amplicon sequencing is the best and economical
option to understand the microbial community members
in general, but it has limitations and may result in biases
(Lim et al. 2020), leading to the increasing applications of
shotgun metagenomics.

Shotgun metagenomics independently sequences total
genomic DNA retrieved directly from a sample to pro-
duce reads that align to various genomic locations for the
countless genomes present, including the non-microbes
(Sharpton 2014). Metagenomic tools could unravel the
vast taxonomic diversity, metabolic function potential
and physiology of uncultivated microorganisms, includ-
ing the novel and rare taxa, and previously unknown
metabolic pathways (Vanwonterghem et al. 2014). A few
studies have investigated the biohydrogen-producing
microbiomes using metagenomics (Mazareli et al. 2020;
Soares et al. 2018; Villa Montoya et al. 2020). Mazareli
et al. (2020) used metagenomics to correlate taxonomic
diversity of indigenous microbial biomass with the per-
formance of biohydrogen reactor fed with banana wastes
under mesophilic temperature. Using FMAP (Functional
Mapping and Analysis Pipeline) for metagenomic and
metatranscriptomic studies tool, Clostridium and Lac-
tobacillus were the dominant indigenous acidogenic
bacteria, and the main genes encoding key enzymes
involved in the fermentation were found to be related to
carbohydrate metabolism, acidogenesis and biohydro-
gen production enzymes such as glucose-6-phosphate
dehydrogenase, fructokinase, lactate dehydrogenase and
pyruvate ferredoxin oxidoreductase. Metagenomic study
by Villa Montoya et al. (2020) reported domain Bacteria
represented 97.2% relative abundance with the predomi-
nance of genera Clostridium (87.9% relative abundance)
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in the mesophilic biohydrogen-producing bioreactor fed
with coffee wastes. Gene identifications showed that 8.3%
of the genes were corresponded to anaerobic degradation
enzymes mainly for the production of organic acids and
alcohols and may be associated with the metabolic poten-
tial of Clostridium sp. In addition, 37 KEGG orthologues
(KOs) were identified to be associated with biohydrogen
production, highlighting enzymes pyruvate-ferredoxin
oxidoreductase, anaerobic carbon-monoxide dehydro-
genase, formate dehydrogenase and ferredoxin hydroge-
nase. Genes related to these enzymes were mainly found
in Clostridium sp. (Villa Montoya et al. 2020).

Breakthroughs in next generation sequencing (NGS)
technologies has also led to another subfield of -omic
technologies, which is metaproteomics. Metaproteom-
ics profiles enzymes and proteins in microbiomes, and
can potentially link the function of a protein to a taxon
and its metabolic activities (Chistoserdova 2009; Lim
et al. 2020). Metaproteomics has been widely applied in
studying anaerobic digester bioreactors and human gut
microbiome, but its application is still limited in investi-
gating the microbiomes of biohydrogen dark fermenta-
tion. Previously, metaproteomics was used to establish
the relationship between phylogeny, function, and meta-
bolic activity of biohydrogen and methane co-production
microbiomes from food waste (Jia et al. 2017). A total
of 651 bacterial proteins and 477 archaeal proteins were
detected in the study, revealing the complexity and meta-
bolic diversity during the biogas production process. The
study also revealed that the key bacterial proteins from
Gammaproteobacteria, Clostridia and Bacilli related to
biohydrogen production came from pyruvic acid decar-
boxylase and formic acid decomposition pathway in car-
bohydrate metabolisms.

Future outlook

Biogas (i.e. methane) microbiomes are more widely
and intensively studied than biohydrogen, despite the
fact that these two processes share many biochemical
and metabolic routes. This is probably due the more
advanced research and wider adoption of anaerobic
digestion for biogas production as cleaner energy pro-
duction technology in the society. It has been demon-
strated that methane production is directly linked to
the composition of the anaerobic digester microbi-
omes, in addition to the microbial metabolism, which
is dependent on the environmental parameters of the
reactor (Campanaro et al. 2020). This makes under-
standing of the microbial composition of a bioreactor
and their behaviour a critical aspect in the quest for
a feasible biohydrogen production via dark fermenta-
tion. Pugazhendhi et al. (2019) reviewed the microbi-
omes involved in the anaerobic hydrogen-producing
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granules (HPG). Granulation increases the reaction
efficiency of a fermenter, compared to using sludge.
The dominant taxa in the microbial community of
reactor systems employing HPG has been discussed,
allowing the monitoring of the microbial species for
easier control of the kinetic parameters, and contrib-
utes to the development of stable bioprocess system
(Pugazhendhi et al. 2019). This suggests the impor-
tance of meta-analysis of hydrogen-producing micro-
bial community from different reactor systems, and
the correlation with their physicochemical parameters
and reactor performance.

A summary of the molecular tools in analysing the
biohydrogen-producing microbial community has
recently been published (Kumar et al. 2020), describ-
ing the “targeted” molecular tools (e.g. FISH, qPCR)
and the advantages of NGS in providing quicker and
more comprehensive investigation. A combination of
culture-dependent approach, targeted molecular tools
and NGS, and multi-omics are definitely the way for-
ward in providing a system-based understanding of the
biohydrogen microbiomes. Multi-omics of this engi-
neered reactor system can also benefit from the rap-
idly expanding experimental and computational tools
for investigating human and environmental microbi-
omes, allowing for deeper understanding of the com-
munity structure and functions from the -omics data.
This includes the advancements in co-occurrence net-
work, genome-scale metabolic model, protein—protein
interaction network, the metabolic-driven metabo-
lomics network (Liu et al. 2020), and the integration of
all the -omics data. This is in addition to the need for
best practices for analysing the microbiomes towards
a unified approach in the analysis of reactor systems.

Knowledge obtained from the -omics techniques can
be used to engineer a desired community structure,
towards maximising productivity of an engineered sys-
tem, and balancing the effects of any perturbations.
Tools for manipulating community structure in situ
are also being investigated. CRISPR/Cas-related sys-
tem has been used in a targeted genome editing of
specific microorganisms within a complex microbial
community (Rubin et al. 2020), paving the way for
manipulation of microbiomes in many different appli-
cations, possibly in the biogas and biohydrogen-pro-
ducing reactor system too. There is still a long way to
go before this precise gene and genome manipulation
system can be applied in a complex community like the
anaerobic digester’s, but it is important to first have
the full understanding of the microbial community and
the relationships with the physicochemical parameters
in controlling the production yield and rate.
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Conclusion

Biohydrogen is a common by-product of many bacterial
metabolic pathways during dark fermentation. Microbial
communities involved in dark fermentation are phylo-
genetically and functionally diverse which contribute to
biohydrogen production from the breakdown of complex
organic substrates, such as POME and other industrial
wastes. As a system which relies on microbial metabo-
lisms, insights on the microbial members present in the
reactor is important towards obtaining a robust and effi-
cient biohydrogen production system. Numerous molecu-
lar tools for screening, quantification and identification
of biohydrogen-producing microbial communities have
been used to correlate the phylogeny, interspecies interac-
tions and their function to dark fermentative biohydrogen
process. Currently, DGGE and amplicon sequencing are
widely used in the study of biohydrogen microbiomes. The
use of -omics technologies in biohydrogen research are
still relatively limited, compared to the more widely inves-
tigated anaerobic digester’s microbiomes for biomethane
production. We believe similar advanced tools can be
applied to biohydrogen-producing reactors too, with the
prospect to unravel the limitless potential of the microbial
members in the system.
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