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Abstract 

Chitin is abundant in nature and its degradation products are highly valuable for numerous applications. Thermophilic 
chitinases are increasingly appreciated for their capacity to biodegrade chitin at high temperatures and prolonged 
enzyme stability. Here, using deep learning approaches, we developed a prediction tool, Preoptem, to screen ther-
mophilic proteins. A novel thermophilic chitinase, Chi304, was mined directly from the marine metagenome. Chi304 
showed maximum activity at 85 ℃, its Tm reached 89.65 ± 0.22℃, and exhibited excellent thermal stability at 80 
and 90 °C. Chi304 had both endo- and exo-chitinase activities, and the (GlcNAc)2 was the main hydrolysis product 
of chitin-related substrates. The product yields of colloidal chitin degradation reached 97% within 80 min, and 20% 
over 4 days of reaction with crude chitin powder. This study thus provides a method to mine the novel thermophilic 
chitinase for efficient chitin biodegradation.
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Introduction
Chitin, a polysaccharide polymer linked by N-acetyl-D-
glucosamine (GlcNAc) through β-1,4-glycosidic bonds, 
is the second most abundant component of biomass in 
nature (Dash et al. 2011). It is estimated that the natural 
biosynthesis of chitin is nearly 100 billion tons annually 
(Yang et al. 2016). Chitinases, which are glycoside hydro-
lases, play an essential role in the hydrolysis of glycosidic 
bonds in chitin to form soluble chitooligosaccharides 
(Barad et  al. 2020). These products have been adopted 
for agricultural uses in regulating plant immunity and 
defense systems, enhancing plant response to biotic 
stress, promoting plant growth and yield and improv-
ing fruit quality and shelf-life (Desaki et al. 2018; Jia et al. 
2020; Pusztahelyi 2018).

Chitin has a highly ordered crystalline structure and is 
insoluble in water. Commonly used degradation or pre-
treatment methods include chemical, physical and enzy-
matic methods. Chemical method generally refers to the 
treatment of chitin with strong acid, which will cause 
serious environmental pollution (Yabushita et  al. 2015). 
Physical methods include high temperature, micro-
wave and ultrasonic wave, etc. (Ajavakom et  al. 2012). 
Although this method avoids environmental pollution, 
the degradation efficiency of chitin is low. While the 
enzyme method has the advantages of green, efficiency 
and environmental friendliness, the dense structure of 
chitin makes it not fully accessible to enzymes, which 
can be alleviated if chitin has undergone some degree of 
pretreatment, such as high temperature. So high-temper-
ature chitinases and their thermal stability are important 
for use in the conversion of waste chitin powder to the 
high value-added production of chitooligosaccharides. 
While most chitinases exhibited their highest activity at 
an optimum temperature below 65 ℃ (Loni et  al. 2014; 

Yahiaoui et al. 2019), only a few thermophilic chitinases 
such as the ChiA-Mt45 (Mohamed et  al. 2019), ChiA-
Hh59 (Bouacem et  al. 2018), ChiA (Tanaka et  al. 1999), 
and GlcNase (GlmATk) (Tanaka et  al. 2003) have been 
reported. Their optimum temperatures were 90, 85, 85, 
and 80 ℃, respectively. However, these four acidic chi-
tinases only acted on colloidal chitin or chitooligosac-
charides, and their activities on crude chitin powder 
were unknown and remained only at the level of scien-
tific research. Kuzu et  al. detected the activity of chi-
tinase in the culture supernatant of Bacillus thuringiensis 
subsp. kurstaki HBK-51, isolated from chitin-containing 
wastes, with an optimum reaction temperature of 110 ℃. 
To the best of our knowledge, this represents the highest 
recorded temperature for chitin degradation. Unfortu-
nately, the nucleic acid sequence of the responsible chi-
tinase and the purified enzyme were not published (Kuzu 
et al. 2012).

Most studies such as the four chitinases mentioned 
above rely on finding candidate thermophilic chitinases 
from culturable thermophilic microorganisms. How-
ever, this method is greatly limited since most micro-
organisms cannot yet be isolated from the natural 
environment by culture-based techniques, especially 
those in extreme environments. Moreover, chitinase 
may be rare among culturable thermophilic microor-
ganisms, which increases the difficulty of finding novel 
thermophilic chitinases. However, extreme environ-
mental samples (oceans, lakes, hydrothermal springs, 
forests, etc.) not only contain huge microbial resources, 
but also a wealth of bioactive molecules and enzymes. 
Metagenome- and genome-mining methods (func-
tion-based or sequence based, etc.) that do not rely 
on culturable microorganisms can thus exploit these 
resources at a larger scale and explore deeper levels of 
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metabolic capability in environmental samples (Adam 
and Perner 2018; Alma’abadi et  al. 2015; Mirete et  al. 
2016; Nasseri et al. 2018). Additionally, the number of 
sequenced metagenomes in public databases has grown 
substantially in recent years, and which have become 
more accessible to researchers with the development 
of functional annotation methods, such as Pfam (El-
Gebali et  al. 2019), CAZY (Palcic 2011) and BLAST 
(Huerta-Cepas et  al. 2017). However, until now a few 
method has been developed to reliably predict detailed 
temperature-related properties of proteins, which can 
be used in conjunction with functional annotation tools 
to directly screen thermophilic proteins in metagen-
omic data.

One promising approach for predictive annotation 
of protein properties is deep learning, a sub-field of 
machine learning that uses multi-layered deep neural 
networks (DNNs) to extract novel features from clas-
sified input sequences. Deep learning is generally most 
effective when applied to large datasets. The essence of 
most machine learning algorithms is to find patterns in 
the available data and heavily rely on data (Siedhoff et al. 
2020; Singh et al. 2021). In the enzyme engineering field, 
there are only a few published models predicting the 
optimal temperature of enzymes. In 2019, Engqvist et al. 
reported a machine learning model to accurately predict 
the optimal growth temperature for bacteria, archaea and 
microbial eukaryotes and further predicted the catalytic 
temperature optima of enzymes with the machine learn-
ing model. Thus the catalytic temperature optima of 6.5 
million enzymes, covering 4447 enzyme classes were pre-
dicted successfully (Li et  al. 2019). In addition, another 
machine learning model, TOME (temperature optima for 
microorganisms and enzymes), was developed by Payne 
in 2020. Through ensemble learning and resampling 
strategies, the accuracy of prediction was significantly 
improved (Gado et al. 2020). However, most of the cur-
rent machine learning models only provided prediction 
methods and lacked strong experimental data.

In light of these previous studies, we hypothesize that, 
due to its high polymerization and density, crude chitin 
will be more easily biodegraded under high temperatures 
by novel thermophilic chitinases that maintain prolonged 
enzyme stability. In this study, to test this hypothesis, we 
developed a deep learning predictive tool, Preoptem, to 
predict the optimal temperate of proteins, and used it to 
explore a large metagenomic dataset. We subsequently 
screened the novel thermophilic chitinase Chi304 
directly from a previously published ocean metagen-
ome (Sunagawa et  al. 2015). To validate the predictive 
capacity of Preoptem and to characterize the activity of 
Chi304, we investigated its stability at high temperatures 
and activity against a range of substrates, including high 

density and high polymerization degree crude chitin. We 
also screened the antimicrobial activity of the Chi304 
hydrolysis products of chitin.

Materials and methods
General
We purchased the crude chitin powder [(C8H13NO5)n, 
MW: 203.19, product code: L1825062] from Aladdin 
(Shanghai, China), N-acetyl-D-glucosamine (GlcNAc) 
from YuanYe  Bio-Technology (Shanghai, China), and 
(GlcNAc)2–6 from Huich Biotech (Shanghai, China) com-
panies. The polymerases and restriction endonucleases 
used in this study were previously described in Guan’ 
work (Guan et al. 2020). Mutant sequences were synthe-
sized by General Biosystems Ltd (Anhui, China). The LB 
medium (L−1) consisted of 10.0 g of NaCl, 5.0 g of yeast 
extract and 10.0 g of peptone. The pH of the LB medium 
was adjusted to 7.0 using NaOH. The TSA medium (L−1) 
was composed of 10.0 g of peptone, 10.0 g of saccharose 
and 1.0 g of glutamic acid. The pH of the TSA medium 
was adjusted to 7.0 with NaOH. Both solid media were 
amended with 1.5% agar.

The colloidal chitin was prepared according to a pre-
viously described method (Garcia-Fraga et  al. 2015) 
with slight modifications. A total of 5  g of chitin were 
dissolved in 90  mL of 37% HCl and stirred vigorously 
at room temperature for 2  h. Subsequently, we added 
410 mL of 95% pre-cooled ethanol and stirred for another 
30  min, which was followed by swelling overnight at 
4 ℃. The mixture was then centrifuged at 10,000 × g for 
10  min at room temperature, and the precipitate was 
collected and washed with distilled water until the pH 
approached a neutral value. The neutral precipitate was 
then dissolved with distilled water to a final concentra-
tion of 2% and then stored at 4 ℃.

Dataset
The optimal temperatures for each of the microorgan-
isms were collected from the BacDive database (Söhngen 
et al. 2014). As most of the microorganisms in the data-
base belong to the mesophilic class, we selected those 
with optimal temperatures < 20  °C, > 30  °C and < 40  °C, 
and > 50  °C, as the psychrophilic, mesophilic and ther-
mophilic organisms, respectively. In the case of the 
mesophilic class, microorganisms belonging to differ-
ent genera were selected in order to reduce the number 
of genome number and increase the gene complexity of 
this class. However, in the case of the psychrophilic, and 
thermophilic classes, the microorganisms with different 
species were selected in the dataset, as these two classes 
had fewer number of species than that of the mesophilic 
class. Importantly, we only selected the species that 
were fully sequenced and annotated in the database. As 
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a result, a total of 456 species were collected and their 
genomes downloaded from the NCBI (ftp://​ftp.​ncbi.​nlm.​
nih.​gov/​genom​es/​Bacte​ria/) database, as shown in Addi-
tional file 1: Table S1.

The program Ortholog Finder 2 (ver. 2.2.7) (Emms and 
Kelly 2019) was used to identify the orthologs among all 
of the proteins in the three classes (psychrophilic, meso-
philic or thermophilic proteins). Only the proteins in the 
homolog cluster with at least two classes were selected 
for training the prediction models, as the method was 
able to make model predictions about the thermal prop-
erty of the proteins.

Model construction
We employed deep leaning models trained on the Ten-
sorFlow platform and based on Keras 2.0.1 in a Python 
2.7 programming environment. We leveraged previ-
ously reported deep learning methods from other fields 
and used open-source code, with some modifications. 
We first transformed the protein sequence as the one-
Hot-Coded matrix. The final architecture comprised two 
convolutional layers, each followed by a maximum pool-
ing layer; two fully connected layers, each followed by a 
dropout layer (dropout rate of 0.3); and a final prediction 
layer. In this model, we used a “relu” activation function 
(except for the final prediction layer). In order to optimize 
the parameters, we used the optimizer adaptive moment 
estimation (Adam) with the AMSGRAD parameter as 
true. The MSE (mean squared error) served as both loss 
function and performance metric. The maximum train-
ing epoch and batch size of the training were set as 100 
and 32, respectively. We employed the early stopping 
technique in the training process in order to avoid over-
training and subsequent over-fitting of the prediction 
model. The tenfold cross-validation was applied to split 
the homologous clusters, train and validate the perfor-
mance of the proposed method.

Protein expression and purification
The chitinase Chi304 encoding sequence was synthe-
sized by General Biosystems Co., Ltd (Anhui, China) and 
linked to the pET30a vector at EcoRI (5′) and XhoI (3′). 
The recombinant plasmid was then transferred into the 
E. coli expression strain BL21(DE3), with a random sin-
gle clone being picked and cultured as a seed solution. 
2 mL of the seed solution was then transferred to 200 mL 
of LB medium containing kanamycin (at a final concen-
tration of 50 μg/mL) and cultured at OD600 = 0.6–0.8 at 
37 ℃, 200  rpm. Subsequently, we added isopropyl-β-D-
thiogalactopyranoside (IPTG) at a final concentration of 
0.25  mM and reduced the culture temperature to 16 ℃ 
in order to induce protein expression for 16–18  h. The 
culture mixture was then centrifuged at 4 ℃, 13, 786 × g 

for 5 min, and the bacterial precipitation was harvested 
and resuspended in a Tris–HCl buffer (20 mM, pH 8.0). 
The mixture was then lysed through ultrasonication for 
5  min (every 5-s interval, ultrasound 3  s, 10 times in 
total) on ice. Subsequently, we obtained the supernatant 
by centrifugation at 4 ℃ and 13,786 × g for 30 min. From 
the crude enzyme solution, we purified Chi304 using a 
Ni column, as illustrated in a previous work (Guan et al. 
2020).

Detection of degraded activity to colloidal chitin
The activity of Chi304 was determined by measuring 
the amount of reducing sugars released during chitin 
hydrolysis with colloidal chitin as the substrate. The reac-
tion mixture (1 mL) consisted of 250 μL Chi304 (25 μg/
mL), 250  μL 2% (w/v) colloidal chitin and 500 μL gly-
cine–NaOH buffer (100 mM, pH 9.0). After incubation at 
80 °C for 30 min, 1 mL of 3,5-dinitrosalicylic acid (DNS) 
was added in order to terminate the reaction (Additional 
file  2: Fig. S1). This was followed by boiling for 10  min 
and cooling to room temperature. The mixture was then 
centrifuged for 1 min at 13, 786 × g and the supernatant 
used to detect the absorbance at 540  nm (Miller 1959). 
A total of three experimental replicates were conducted. 
One unit of chitinase activity was defined as the amount 
of chitinase used to yield 1 μmol of reducing sugars per 
minute under the aforementioned conditions.

Enzymatic properties
In order to determine the optimal pH values necessary to 
ensure maximum Chi304 activity and stability, we used 
various reaction buffers (Na2HPO4–citric acid buffer, pH 
3.0–8.0; Tris–HCl buffer, pH 8.0–9.0; and glycine–NaOH 
buffer, pH 9.0–11.0). The reaction system used for deter-
mining the optimum pH was 250 μL Chi304 (25 μg/mL), 
250 μL colloidal chitin and 500 μL reaction buffer with 
different pH values. The pH stability assay was performed 
by pre-incubating Chi304 (0.25 mg/mL) on ice for 1 h in 
different buffer solution at different pH values (pH 3.0–
11.0). The residual enzyme activity was then detected as 
described above.

After detecting the optimum Chi304 temperature, we 
selected a temperature in the range of 20–90 ℃. The spe-
cific procedure consisted of 250  μL Chi304 (25  μg/mL) 
mixed with 250 μL colloidal chitin and 500 μL glycine–
NaOH buffer (100  mM, pH 9.0), after which the sys-
tem was incubated at different temperatures for 30 min. 
Chi304 temperature stability was determined by measur-
ing its residual activity after incubating at 50, 60, 70, 80 
and 90 ℃ for 1, 2, 3, 4, 5 and 6 h, respectively. The resid-
ual enzyme activity was then calculated according to the 
method described above.

ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/
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Chitin pretreatment and detection by scanning electron 
microscopy
A total of 10  mL ddH2O was added to a tube contain-
ing 20 mg of crude chitin powder. The mixture was con-
secutively treated by ultrasonic homogenizer (JY92-IIN, 
25  kHz, 260  W, China, 20  min), numerically controlled 
ultrasonic cleaner (KQ-300DE, 40  ℃, 40  kHz, 120  W, 
China, 20  min), microwave (2  min) and water bath at 
80 ℃ (8 h). Crude chitin powder without any treatment 
was used as control. Colloidal chitin and crude chitin 
powder that was enzymolyzed by Chi304 were also pre-
pared. All samples were freeze-dried. Scanning electron 
microscopy (SEM, Hitachi SU8010, Tokyo, Japan) was 
performed in order to investigate the surface of the pre-
treated chitin (Zhang et al. 2018).

Detection of degraded activity to chitin oligosaccharides 
and crude chitin powder
In cases where the degradation substrates were (Glc-
NAc)2, (GlcNAc)3 or (GlcNAc)6, the reactions were per-
formed by incubating 10 μL Chi304 (2  mg/ml), 20  μL 
glycine–NaOH buffer (100 mM, pH 9.0) and 10 μL chi-
tooligosaccharides (50  mM). The reaction system was 
then incubated at 80℃ for 10 min, 30 min, 1 h, 2 h, 5 h, 
8 h, and 12 h.

In contrast, in cases where the substrate was (Glc-
NAc)4 or (GlcNAc)5, the reaction system consisted of 
10 μL Chi304 (0.1 mg/mL), 20 μL glycine–NaOH buffer 
(100  mM, pH 9.0) and 10 μL chitooligosaccharides 
(50 mM). After this, the reaction system was transferred 
to a water bath at 80℃ for 2 min, 5 min, 10 min, 30 min, 
1 h, 3 h, and 8 h.

In cases where the degraded substrate was crude chi-
tin powder, the reaction system was expanded to 50 mL, 
specifically consisting of 250 mg of crude chitin powder 
substrate, 25 mL Chi304 (1 mg/mL) and 25 mL glycine–
NaOH buffer (100  mM, pH 9.0). The system was then 
placed on a magnetic stirrer with continuous stirring at 
200 rpm at 80℃ for 6 h, 12 h, 24 h, 36 h, 48 h, 60 h, 72 h 
and 96 h.

Detection of degradation products by thin‑layer 
chromatography
We used a thin-layer chromatography analysis (TLC) in 
order to analyze the degradation products. The detailed 
procedure consisted of 1 μL of reaction mixture stained 
on silica gel plates (0.2–0.25  mm) (HPTLC Silica gel 
60, Merck Co., Germany). The developing solvent 
[n-butanol:methanol:aqueous ammonia:water = 5:4:2:1 
(v/v/v/v)] was then used to unfold the sample for about 
1  h. After natural air drying, we uniformly sprayed a 
chromogenic agent (400  uL aniline, 400  mg diphe-
nylamine, 20 mL acetone, and 3 mL 85% phosphoric acid) 

on the surface of the plate and dried for 15 min at 120 °C, 
after which the product was visualized (Hong et al. 2008).

Detection of degradation products by MALDI‑TOF
The tested samples consisted of 1  μL of degradation 
products and 1 μL of matrix. The matrix contained 20 mg 
α-cyano-4-hydroxycinnamic acid [HCCA] and 20  mg 
2,5-dihydroxybenzoic acid [DHBA] dissolved in 2  mL 
of 90% methanol/water with 0.1% formic acid. The sam-
ple mixture was then subjected to matrix-assisted laser 
desorption ionization-time of flight mass spectrometry 
(MALDI-TOF MS) (Bruker Daltonics, Billerica, MA). 
The results were analyzed using flexAnalysis 3.4 software 
(Guan et al. 2020).

Detection of degradation products by HPLC
The reaction product was filtered by a 0.22-μm filter 
membrane and analyzed using high-performance liq-
uid chromatography (Shimadzu LC-20AT). The reac-
tion conditions were as follows: chromatogram column: 
Shodex Sugar KS-802; column temperature: 60℃; mobile 
phase: H2O; detector: Shimadzu RIDE-20A; flow rate: 
0.6 mL/min.

Detection of the antibacterial activity of chitin 
oligosaccharides
The completely degraded colloidal chitin was collected by 
centrifuging at 13, 786 × g at 4 ℃ for 1 min. The superna-
tant was then taken for vacuum freeze-drying. The lyo-
philized powder was dissolved in double distilled water 
to different concentrations (50, 75, 100, 125 and 150 mg/
mL) for later use. The Gram-positive bacteria Bacillus 
subtilis WB600 and the Gram-negative bacteria Xan-
thomonas sp. saved in our laboratory were used to exam-
ine the antibacterial activity using the disk inhibition 
zone assay.

Xanthomonas sp. was cultured overnight in TSA 
medium, in order to be activated. The mixtures were then 
separately diluted to OD600 = 0.3. 4% (V/V) and added to 
the corresponding solid medium (heat preservation at 
60 ℃). After the culture medium containing the bacteria 
were poured onto the plate and solidified, Oxford cups 
were gently placed on the surface of the medium. A total 
of 100 μL of chitin oligosaccharide solutions at different 
concentrations were added to the Oxford cups on the 
TSA plates.

After B. subtilis WB600 was cultured and activated in a 
LB medium overnight, the bacterial solution was diluted 
to OD600 = 0.3. 0.1% (V/V) and incubated to the solid LB 
medium (heat preservation at 60 ℃). After preparing the 
plate as described above, we added 200 μL of chitin oli-
gosaccharide solutions at different concentrations to the 
Oxford cup.
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The plates were then gently moved to the incubator at 
28 ℃ for culture. After 24 h of incubation, the diameters 
of the inhibition zones were measured using a Vernier 
caliper. All tests were performed a total of three times for 
each sample in order to ensure proper replication.

Online predictor
In order to make the Preoptem predictive tool easily 
accessible to scientists in the protein research commu-
nity, we built a new website (http://​www.​elabc​aas.​cn/​
pird/​preop​tem.​html) using the Hypertext Markup Lan-
guage (HTML). All models were constructed using Perl 
as the backend code. Users can easily predict the optimal 
protein temperatures using our Preoptem website.

Results and discussion
Construction of a deep learning model to discriminate 
thermophilic proteins
To construct the deep learning model for screening the 
thermophilic proteins, a protein dataset with differ-
ent temperature tolerance was constructed. Firstly, the 
psychrophilic, mesophilic, and thermophilic microor-
ganisms were distinguished according to their optimal 
growth temperature by screening the BacDive database. 
Then, their corresponding protein sequences of those 
microorganisms were downloaded from NCBI. A total 
of 456 different species were included in the dataset, 
which contained 241,416 psychrophilic, 880,211 meso-
philic, and 326,547 thermophilic proteins (Additional 
file  1: Table  S1 and Fig.  1A). As it was an unbalanced 
dataset and the proteins from diverse species differed 
in function, the proteins were then reorganized based 
on orthologous analysis. As shown in Fig.  1B, only 
550,523 proteins among the 108,658 ortholog clusters 
were found in more than one of the psychrophilic, mes-
ophilic or thermophilic classes. And those 550,523 pro-
teins were used to train and validate the models based 
on the tenfold cross-validation. The other 897,651 pro-
teins that were not used for training the models were 
selected as the test dataset. All of the 550,523 proteins 
were then encoded within the one hot encoded matrix 
and were given a label indicating the optimal tem-
perature for the corresponding microorganisms from 
which they were derived. A tenfold cross-validation 
strategy was used to train and evaluate the deep learn-
ing models, in which all orthologous clusters were split 
into ten folds. The kernel size and number of neurons 
were optimized by the global search algorithm, and for 
which the Pearson’s correlation coefficient (r) between 
the experimentally determined and predicted optimal 
temperature in all of the validation datasets was used as 
the indicator. As a result, the highest r value among all 
models in the validation dataset reached as high as 0.61, 

and the optimized kernel size and neuron number were 
18 and 256, respectively (Fig.  1C). The Pearson’s cor-
relation coefficient (r) on the training, validation and 
test datasets were 0.63 ± 0.01, 0.61 ± 0.01 (Fig. 1D) and 
0.58 ± 0.01(Fig.  1E), respectively. In addition to Pear-
son’s correlation coefficient (r), we also used the MAE 
(mean absolute error) as the other metric to evaluate 
the performance of the models. And the MAE on the 
training, validation and test datasets were 9.21 ± 0.14, 
9.34 ± 0.11 and 9.62 ± 0.12  ℃, respectively. Addition-
ally, we have downloaded all of the proteins with known 
optimal temperature in the Uniprot database. We pre-
dicted its optimal temperature and fit the data with the 
experimentally determined optimal temperature. The 
Pearson’s correlation coefficient (r) (Fig.  1F) and MAE 
were 0.61 ± 0.01 and 13.86 ± 0.36. The results also indi-
cated that the method could be used to mine the ther-
mophilic enzymes.

To further evaluate the performance of the con-
structed models, all of the predicted optimal tem-
peratures of proteins from the same genome in the 
cross-validation system were averaged together to 
determine the predicted optimal temperature for that 
genome in the training dataset, optTem(pre1). As 
shown in Fig.  1G, the optTem(pre1) and the experi-
mental optimal temperature of the microorganism, 
optTem(exp1), were strongly correlated, indicated by 
a Pearson’s correlation coefficient was 0.91. Addition-
ally, we predicted the optimal temperatures of proteins 
that did not exist in the training dataset using the con-
structed predictive models. The predicted optimal tem-
peratures of those proteins within the same genomes 
were averaged as the vector optTem (pre2). A strong 
correlation (Fig.  1H) was also observed between the 
experimental optimal temperature of the microorgan-
ism, optTem(exp2) and optTem(pre2). These results 
indicated that the model was robust and could be used 
to reliably predict optimal temperature of proteins. 
In addition, we also calculated the predicted optimal 
temperature of proteins, optTem(pro) with known 
Tm value. A strong correlation coefficient (r = 0.50) 
between the optTem(pro) amd Tm of proteins was also 
observed (Fig. 1I), indicating that this method could be 
used to identify thermophilic proteins. As established 
by earlier studies, protein structure and amino acid 
sequence always influences its enzymatic properties. In 
our database, the frequency of amino acid E, L, V, Y is 
significantly positively correlated with thermophilicity, 
while a high frequency of amino acid D, H, M, Q, S, T is 
negatively correlated with thermophilicity (Additional 
file 2: Fig. S2), in agreement with the rule reported by 
Igor N. Berezovsky in 2005 (Berezovsky and Shakh-
novich 2005).

http://www.elabcaas.cn/pird/preoptem.html
http://www.elabcaas.cn/pird/preoptem.html
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Screening the thermophilic chitinase 
from the metagenome
Next, we developed a method to screen the thermo-
philic chitinase from the ocean metagenome by the con-
structed deep learning models. The annotated protein 
sequences of the ocean metagenome (Sunagawa et  al. 
2015) were downloaded and the tool hmmsearch in the 
package HMMER was used to search the chitinase with 
the Pfam file (ID: PF00704). As a result, the 3199 proteins 
(Additional file 1: Table S2) were screened out from the 

metagenome and predicted with our deep learning mod-
els described above. As shown in Fig. 2A, approximately 
39.39%, 36.79%, and 23.82% of the proteins were poten-
tially psychrophilic, mesophilic, or thermophilic, respec-
tively. We sorted these proteins based on their predicted 
optimal temperature (Fig.  2B), and the protein with the 
highest optTem(pre) among the full set was Chi304. The 
chi304 gene (GenBank Accession Number: MW446948) 
was then synthesized, inserted into the expression plas-
mid pET30a( +), and the encoded protein was expressed 

Fig. 1  Construction of a deep learning model to screen for potential thermophilic proteins. A Dataset collected in this study. The x-axis represents 
species sorted by optimal temperature and y-axis indicates optimal temperature. B Venn diagrams of the psychrophilic (blue), mesophilic (green), 
and thermophilic (pink) proteins. C Optimization of the parameters of kernel size and number of neurons in the deep learning model. Star indicates 
the highest value of correlation coefficient. D Correlation between the predicted and observed optimal temperatures in the validation dataset. E 
Correlation between the predicted and observed optimal temperatures in the test dataset. F Correlation analysis of predicted optimal temperatures 
for protein with known optimal temperature in the Uniprot database. G Correlation between the predicted and observed optimal temperatures 
in the cross-validation system. H Correlation between the predicted and observed optimal temperatures for a protein that is not included in the 
training dataset. I Correlation analysis of predicted optimal temperatures for protein activity and experimentally determined Tm. D–I The blue dot 
indicates that the data are close to the fitted line, the red dot indicates that the data are far away from the fitted line, and the green dot indicates 
that the data are centered from the fitted line
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by E. coli BL21(DE3), and subsequently purified using a 
Ni–NTA agarose column (Qiagen, USA). The results of 
SDS-PAGE gel separation showed a single band for the 
Chi304 protein at 70.95 kDa, which was consistent with 
its theoretical size (Additional file  2: Fig. S3). Its maxi-
mum specific enzyme activity towards colloidal chitin 
was 12.28 U mL−1, with a surprisingly high Tm value of 
89.65 ± 0.22 ℃.

We then used colloidal chitin as substrate to determine 
the optimal temperature for Chi304 function and we 
found that starting at 20 ℃, Chi304 activity continued to 
increase with rising temperature until it peaked, remark-
ably, at 85 °C before decreasing; at 90 ℃, the protein still 
maintained 87% of its maximum activity (Fig.  2C). In 
view of the fact that there was little difference in Chi304 
activity between 80 and 85  °C, we conducted all subse-
quent experiments at 80  °C for consistency. The Chi304 
protein also exhibited very high thermal stability, with its 
enzymatic activity improving to varying degrees under 
incubation at 50–70  °C for 1–6  h, and reaching as high 

as 137% of its original performance after 2 h at 70 °C. Its 
activity also increased slightly when incubated at 80℃ 
for 4 h, and in the following 6 h, it maintained 95% resid-
ual enzymatic activity. Even after 1 and 2 h at 90℃, the 
residual enzymatic activity still reached 54% and 28% of 
its original activity, respectively (Fig. 2D). The optimum 
pH for the Chi304 reaction peaked at 9.0 under optimum 
temperature, and it remained active in pH range of 3.0 
to 11.0 (Additional file 2: Fig. S4A). In addition, the rela-
tive residual activity of Chi304 was close to 100% that of 
the original after incubation on ice at pH 8.0–10.0 for 1 h 
(Additional file 2: Fig. S4B).

Compared to other chitinases, Chi304 showed the 
highest optimum temperature and thermal stability for 
activity under alkaline conditions yet reported for a chi-
tinase. In addition to chitinase, we have used the tool to 
mine the psychrophilic catalase, thermophilic protease, 
thermophilic glucose oxidase and thermophilic laccase. 
We experimentally identified at least five functional 
proteins for each enzyme. Of those functional proteins, 

Fig. 2  Biochemical characteristics of Chi304. A The number of predicted psychrophilic, mesophilic, and thermophilic proteins among the total 
chitinases screened from the ocean metagenome. B Predicted optimal temperatures of screened chitinases. C Optimum temperature and D 
thermal stability of selected chitinase Chi304
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approximately the 2–3 enzymes in the five functional 
proteins of each enzyme are the expected enzymes. 
Therefore, the general success rate is around 40–60%.

Chi304 exhibited both endo‑ and exo‑activity
The endo-chitinases attack the chitin on random points, 
and the products are mainly (GlcNAc)n (n ≥ 3). While 
the exo-enzymes act on the reducing or non-reducing 
end of the polysaccharide, producing GlcNAc or (Glc-
NAc)2 (Kidibule et  al. 2020; Wang et  al. 2016). In order 
to clarify the degrading mechanism of Chi304, we first 
measured its activity to hydrolyze chitin oligosaccharides 
with 2–6 degrees of polymerization. Thin layer chroma-
tography showed that Chi304 (2  mg/mL) could almost 
completely degrade 50 mM (GlcNAc)6 into (GlcNAc)1–5 
within 30  min (Fig.  3A), and the possible cleavage sites 
are shown in Fig.  3F, suggesting that Chi304 had both 
endo- and exo-activity; when (GlcNAc)5 and (GlcNAc)4 
were used as substrates for Chi304 (0.1 mg/mL) degrada-
tion, the main products were (GlcNAc)2 and (GlcNAc)3 
within 2 min (Fig. 3B and C), suggesting that the chitin 

oligosaccharides with polymerization degrees of 4 and 
5 were the optimal substrates for Chi304 and Chi304 
exhibited strong exo-activity; However, Chi304 (2  mg/
mL) also had a weak ability to degrade chitin oligosac-
charides with low degree of polymerization (n = 2 or 3). 
Specifically, within 720  min, (GlcNAc)3 was completely 
degraded to (GlcNAc)2 and GlcNAc (Fig. 3D). Within the 
same time range, Chi304 could only degrade a propor-
tion of (GlcNAc)2 to produce GlcNAc (Fig. 3E). To sum 
up, Chi304 showed higher degradation activity toward 
chitin oligosaccharides with higher degree of polymeriza-
tion (Suzuki et al. 2002) (Fig. 3F).

Chi304 degrades colloidal chitin with high efficiency
In order to degrade crude chitin powder more efficiently, 
we investigated changes in the physicochemical state of 
the original crude chitin powder under non-enzymatic 
pre-treatments. The SEM results showed that, com-
pared to the raw crude chitin power (Fig.  4A), the col-
loidal chitin had more damage to its highly polymerized 
components, and the chitin was distributed in a loose, 

Fig. 3  Detection of chitooligosaccharide hydrolysis products by TLC. A Detection of (GlcNAc)6 hydrolysis products. B Detection of (GlcNAc)5 
hydrolysis products. C Detection of (GlcNAc)4 hydrolysis products. D Detection of (GlcNAc)3 hydrolysis products. (E) Detection of (GlcNAc)2 
hydrolysis products. F Schematic diagram of chito-oligosaccharides degradation. S, 50 mg mL−1 (GlcNAc)1–6 mixed standard; C, negative control for 
chitinase activity
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flocculated form (Fig. 4B). The ultrasonication (20 min), 
ultrasonic cleaning (20  min) and microwave irradiation 
(2  min) resulted in less damage on the physical surface 
morphology of chitin (Additional file 2: Fig. S5).

In order to maximize the efficiency of chitin degra-
dation, we tested colloidal chitin as the substrate for 
Chi304, since this pretreatment provided the strong-
est initial degradative effects on raw chitin polymer. The 
results showed that after 2-h exposure to Chi304, the 

colloidal chitin was apparently degraded, indicated by a 
change in its physical appearance from a cloudy suspen-
sion to clear solution (Fig.  4C). Detection by MALDI-
TOF revealed that the main degradation product was 
(GlcNAc)2, accompanied by low levels of (GlcNAc)3 and 
GlcNAc (Fig. 4D). Analysis by TLC further showed that 
(GlcNAc)2 and (GlcNAc)3 were produced within 2 min of 
starting the reaction, while GlcNAc was produced after 

Fig. 4  Detection of colloidal chitin degradation. A The surface morphology of crude chitin powder observed by SEM. B The surface morphology of 
colloidal chitin observed by SEM. C The changes of colloidal chitin before and after Chi304 enzymolysis. D MALDI-TOF detection of colloidal chitin 
degradation; standard, 5 mg mL−1 (GlcNAc)1–6 mixed standard. E Detection of colloidal chitin hydrolysis by TLC; S, 50 mg mL−1 (GlcNAc)1–5 mixed 
standard. F Yields of reducing sugar products of colloidal chitin degradation
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Fig. 5  Degradation of crude chitin powder by Chi304 and the antibacterial activity of the chitooligosaccharides products. A Accumulation of 
degraded crude chitin powder under exposure to Chi304. B TLC detection of crude chitin powder hydrolysis; S, 50 mg mL−1 (GlcNAc)1–5 mixed 
standard. C HPLC detection of crude chitin powder hydrolysis; standard, 1 mg mL−1 (GlcNAc)1–3 mixed standard. D Yields of reducing sugars 
produced by crude chitin powder degradation. E Zones of inhibition produced by different concentrations of chitosan oligosaccharides. Zones 
1–6 had 0, 25, 50, 75, 100, and 125 mg mL−1 chitosan oligosaccharides, respectively. F, G Linear relationship between chitosan oligosaccharide 
concentration and the diameter of inhibition zone for F B. subtilis WB600 and G Xanthomonas sp
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30  min (Fig.  4E). The yields of these products over the 
time are shown in Fig.  4. Degradation of colloidal chi-
tin into reducing sugars was rapid within the first hour, 
yielding approximately 90%, and slowed gradually over 
the 80  min reaction time, ultimately resulting in a 97% 
yield.

Chi304 could directly degraded crude chitin powder 
and the chitin oligosaccharide product has definite 
antibacterial effects
We initially tested the capacity for Chi304 to directly 
degrade the comparatively recalcitrant crude chitin pow-
der. To this end, we monitored changes in the morphol-
ogy and composition of crude chitin powder exposed 
to Chi304 in solution at 12 h intervals over a 96-h time 
course. The results showed that, over time, chitin accu-
mulated in large quantities at the bottom of the colloi-
dal solution in the presence of Chi304, and by 96 h, the 
volume was approximately threefold that of the control 
group (Fig.  5A), possibly due to degradative changes 
in the chitin structure incurred by Chi304 activity. We 
used scanning electron microscopy imaging to observe 
changes in the physicochemical state of the original crude 
chitin powder that resulted from enzymatic hydrolysis by 
Chi304. The results showed that Chi304 activity caused 
depolymerization of the chitin, compared with the mark-
edly lower effects of high temperature and reaction buffer 
(Additional file 2: Fig. S6). TLC analysis of the degrada-
tion products showed that a small amount of (GlcNAc)2 
was produced within 10 min, and increased over the fol-
lowing 2 h (Fig. 5B). More sensitive detection by HPLC 
detection at 2 h into the reaction confirmed that the main 
product was (GlcNAc)2, as well as a small amount of Glc-
NAc (Fig.  5C). The degradation products were sampled 
at 12-h time points over the following 4 days for detec-
tion of reducing sugars, which ultimately showed that 
Chi304 was able to degrade 20% of the initial crude chitin 
over 96 h (Fig. 5D). However, the addition of enzyme at 
12-h intervals did not lead to a significant increase in the 
conversion rate. Furthermore, previous studies have sug-
gested that the attachment of enzymes to a substrate sur-
face can limit access to the substrate for other enzymes 
(Zhang et  al., 2015), or that the reaction system can 
produce unknown intermediates that prevent the reac-
tion from continuing, so that the degradation rate of the 
crude chitin powder was low.

In order to investigate potential applications for the 
chitin oligosaccharides, the products were lyophilized 
and then re-dissolved and serially diluted to different 
concentrations (50, 75, 100, 125 and 150 mg/mL) to test 
their antibacterial activity against the Gram-positive 

bacterial strain Bacillus subtilis WB600 and the Gram-
negative soil bacterium Xanthomonas sp. We found that 
the chitin oligosaccharide degradation products could 
obviously inhibit the growth of both Bacillus subtilis and 
Xanthomonas sp. at concentrations as low as 50 mg/mL 
(Fig.  5E). Moreover, the relationship between inhibitory 
effect and concentration was linear and dose depend-
ent, and the higher the concentration of chitin oligosac-
charide, the larger the inhibition zone, indicating greater 
antibacterial effect. As shown in Fig. 5 F and G, the corre-
lation coefficients reached 0.941 and 0.882, respectively, 
implying that these chitosan oligosaccharide products 
could be potentially applied as antibacterial agents.

Conclusion
In this study, we developed a tool based on the deep 
learning approaches for discriminating the thermal pro-
teins. The chitinase Chi304 which has maximum activ-
ity at 85℃ and showed excellent thermal stability at 80 
and 90 °C was screened out. Chi304 had both endo- and 
exo-activities and the degradation products had good 
antibacterial activity. The product yields of colloidal chi-
tin degradation reached 97% within 2.5 h, and 20% over 
4  days of reaction with crude chitin powder. Thus the 
novel thermophilic chitinase, Chi304, is of great impor-
tance for the industrial biodegradation of chitin.
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