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Abstract 

The goal of this study was to determine the capacity of Pleurotus spp. lignocellulosome to transform frequent 
pomiculture residues (grapevine-, plum-, and raspberry sawdust) into raw materials for biotechnological processes. 
All three lignocellulosics induced the synthesis of ligninolytic and cellulolytic enzymes in the tested species. Laccase 
was dominant in the ligninolytic cocktail, with a maximum activity of 40,494.88 U L−1 observed after the cultivation 
of P. pulmonarius on grapevine sawdust. Grapevine sawdust also proved to be the optimal substrate for the synthe-
sis of versatile peroxidases especially in P. eryngii (1010.10 U L−1), while raspberry sawdust favored the production 
of Mn-dependent peroxidase in P. pulmonarius (479.17 U L−1). P. pulmonarius was the dominant cellulolytic agent 
and raspberry sawdust was optimal for the synthesis of xylanases, and endo- and exo-cellulases (15,746.35 U L−1, 
9741.56 U L−1, and 836.62 U L−1), while grapevine sawdust mostly induced β-glucosidase activity (166.11 U L−1). The 
degree of residues delignification was more substrate- than species-dependent, ranging between 6.44 and 23.72% 
after the fermentation of grapevine and raspberry sawdust with P. pulmonarius. On the other hand, the lowest level 
of cellulose consumption was also observed on raspberry sawdust after the cultivation of P. eryngii, which together 
with high delignification also induced the highest selectivity index (1.27). The obtained results show the exceptional 
lignocellulolytic potential of Pleurotus spp. enzyme cocktails which opens up many possibilities for their application in 
numerous biotechnological processes.
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Introduction
Despite the high percentage of holocellulose (cellulose and 
hemicellulose) in various agricultural lignocellulosic resi-
dues, its utilization is limited by binding tightly to lignin 
which protects it from hydrolytic enzymes attack (Ham-
mel 1997; Prasad et al. 2019). Therefore, the most impor-
tant step in the effective conversion of lignocellulose into 
value-added products is its delignification, i.e., the release 
of holocellulose from the lignin protective shield mak-
ing it available for saccharification and further industrial 
purposes (Sánchez 2009; Bimestre et  al. 2022). This is 
the most demanding part of the lignocellulose pretreat-
ment process, limited by numerous environmental and 
economic shortcomings. Namely, conventional physico-
chemical methods for removing lignin from lignocellu-
lose feedstocks imply the use and formation of numerous 
harmful chemical compounds, some of which can inhibit 
the process itself, and also involve high energy consump-
tion (Saha et al. 2016). An alternative method is the bio-
logical delignification of lignocellulose, which is both 
safe for the environment and less expensive. Despite the 
obvious advantages of biological over conventional treat-
ments, they also involve certain disadvantages, such as 
being more time-consuming and less efficient. Therefore, 
one of the main current scientific tasks is to find the most 
efficient biodegradable system as well as the conditions for 
its maximum expression. It is well known that the most 
promising candidates for the biological pretreatment of 
lignocellulose are white-rot fungi and their ligninosomes 
composed mainly of peroxidases and laccases (Leonowicz 
et al. 1999; Ghaffar et al. 2015; Fang et al. 2018). They differ 
greatly in terms of the pattern of lignocellulose depolym-
erization, i.e., whether they simultaneously degrade ligno-
cellulose polymers or selectively degrade lignin (Saha et al. 
2016). Numerous studies have shown that the efficiency 

and selectivity of delignification are greatly affected not 
only by the genetic potential of the species, but also by its 
affinity for lignocellulosic substrates differing in chemical 
composition. Thus, species of the genera Phanerochaete, 
Pleurotus, Ganoderma, and Trametes, etc., have already 
been confirmed as successful delignificators of oil palm 
residues, rice straw, oak sawdust, and wheat straw, respec-
tively (Knežević et al. 2014; Piñeros-Castro and Velásquez-
Lozano 2014; Ćilerdžić et al. 2016a; Mustafa et al. 2016). 
The microbial enzymatic hydrolysis of delignified sub-
strates is also an important step in the economical and sus-
tainable transformation of plant waste, which depends on 
numerous factors, including the selection of the species/
strain and substrate type (Yoon et al. 2014; Bhardwaj et al. 
2021). The most commonly used species for the commer-
cial production of cellulases are micromycetes from the 
genera Aspergillus and Trichoderma, although some mac-
romycetes belonging to the genera Phanerochaete, Schizo-
phyllum, and Pleurotus also showed significant cellulolytic 
potential (Lynd et al. 2002; Goyal and Sony 2011).

Numerous lignocellulosic wastes, available locally or 
globally (from rice straw and sugarcane bagasse in south-
east Asia to wheat straw and corn stalks available world-
wide) have been studied for their suitability to induce 
ligninolytic enzymes synthesis in white-rot fungi dur-
ing fermentation (Bilal et  al. 2017). However, despite the 
proven potential for the induction of ligninolysis and their 
use in biotechnological processes and industry, the main 
disadvantage of substrates such as straw and reed is the 
competitiveness for use as animal feed. On the other hand, 
numerous lignocellulosic residues have not been explored 
yet, despite their considerable abundance and great dis-
posal problems. Thus, only a few studies have dealt with 
the fermentation of pomiculture lignocellulosic residues, 
such as cherry sawdust, mandarin peels, and grapevine 
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sawdust, and their potential to induce the synthesis of 
ligninolytic enzymes in several white-rot species (Stajić 
et al. 2006, 2017; Simonić et al. 2010; Ćilerdžić et al. 2018).

Starting from the great nutritional and medicinal 
potential of Pleurotus eryngii (DC.:Fr.) Quél. and P. pul-
monarius (Fr.) Quél., which are increasingly produced 
commercially worldwide, our study aimed at determin-
ing their potential to depolymerize abundant but poorly 
studied pomiculture residues which could be their culti-
vation substrates. The main goals of the study were the 
characterization of ligninolytic and cellulolytic enzymes 
synthesized by P. eryngii and P. pulmonarius during the 
fermentation of grapevine-, plum- and raspberry sawdust 
as well as defining their depolymerization selectivity.

Materials and methods
Organism and growth conditions
Pleurotus eryngii HAI 1017 and P. pulmonarius HAI 509 
cultures obtained from the Institute of Evolution, Univer-
sity of Haifa, Israel (HAI), are maintained on Malt agar 
medium at 4 °C in the culture collection of the Institute 
of Botany, Faculty of Biology, University of Belgrade.

The inoculum preparation was performed by inoculat-
ing 100.0  mL of the synthetic medium (glucose, 10.0  g 
L−1; NH4NO3, 2.0 g L−1; K2HPO4, 1.0 g L−1; NaH2PO4 x 
H2O, 0.4 g L−1; MgSO4 × 7H2O, 0.5 g L−1; yeast extract, 
2.0 g L−1; pH 6.5) with 25 mycelial disks (Ø 0.5 cm) of a 
7-day culture. The incubation was performed on a rotary 
shaker (22 ± 2 °C, 160 rpm) for 7 days. The obtained bio-
mass was washed three times using sterile distilled water 
(dH2O) and then homogenized with 100.0 mL of dH2O in 
a laboratory blender (Waring, USA). Solid-state cultiva-
tion was carried out at 25  °C in the dark, using 250-mL 
flasks containing 6.0  g of pomiculture residue (grape-
vine-, plum-, and raspberry sawdust) as the only car-
bon source and the addition of 30.0 mL of the synthetic 
medium without glucose. Thus prepared and sterilized 
(114 °C, 15 min) substrates were inoculated with 9.0 mL 
of homogenized inoculum.

Enzyme assays
The extracellular enzymes were extracted after 21  days 
of cultivation by stirring the samples with 50.0 mL dH2O 
on a magnetic stirrer (4  °C, 10  min). The extracts were 
centrifuged (at 4  °C and 3000 rpm, for 15 min), and the 
obtained supernatants were used for the spectrophoto-
metric (BioQuest CECIL CE2501, UK) determination of 
the activities of Mn-oxidizing peroxidases, laccases, exo-
cellulases, endo-cellulases, β-glucosidases, and xylanases. 
The activities of the Mn-oxidizing peroxidases [Mn-
dependent peroxidases (MnP, EC 1.11.1.13), versatile 
peroxidase (VP, EC 1.11.1.16)] and laccases (EC 1.10.3.2) 
were determined using 3  mM phenol red (ε610 = 22 

000  M−1  cm−1) and 2,2’-azino-bis-[3-ethyltiazoline-
6-sulfonate] (ABTS; ε436 = 29,300  M−1  cm−1), respec-
tively, as the substrates (Stajić et al. 2010). The enzymatic 
activity of 1  U was defined as the amount of enzyme 
which transforms 1 μmol of substrate per minute.

Microcrystalline cellulose (1%) and medium viscosity 
carboxymethyl cellulose (1%) were used as the substrates 
for the determination of exo- and endo-cellulase activity, 
respectively, with glucose as the standard. Dinitrosalicylic 
acid (DNS) reagent was utilized to stop the reaction and 
the fermentation efficiency, i.e., the concentration of the 
reducing sugars, was measured spectrophotometrically 
at 540  nm (Bernfeld 1955). One unit of exo- and endo-
cellulase activity was defined as the amount of enzyme 
required to produce 1.0  µmol of glucose per minute at 
39 °C. The activity of xylanase was estimated using birch-
wood xylan (1%) as the substrate and xylose as the stand-
ard, while the DNS reaction was also performed for the 
detection of released xylose. The unit of xylanase activ-
ity was defined as the amount of enzyme required to 
produce 1.0 µmol of xylose per minute at 39 °C. 4-Nitro-
phenyl β-d-glucopyranoside and p-nitrophenol were 
used as the substrate and standard, respectively, for the 
determination of β-glucosidase activity, and 1 M Na2CO3 
was used as the stopping reagent prior to the measure-
ment of absorbance at 405 nm (Grujić et al. 2015). One 
unit of β-glucosidase activity was defined as the amount 
of enzyme required to produce 1.0 µmol of p-nitrophenol 
per minute at 37 °C.

Specific enzymes activities (U  mg−1) were obtained as 
the ratio between absolute enzymes activities (U L−1) and 
total proteins content (mg  mL−1) determined by Brad-
ford’s method, using bovine serum albumin as the stand-
ard (Silva et al. 2005).

Electrophoresis
The isoforms of the most active enzyme were screened 
for both Pleurotus species after fermentation of all the 
tested pomiculture residues. Laccase isoforms and their 
isoelectric points (pIs) were detected by isoelectric focus-
ing (IEF) in a 7.5% polyacrylamide gel with 5% ampholyte 
in the 3–10 pH range using a Mini IEF cell 111 (Bio-Rad, 
USA). The zymogram was visualized after the incubation 
of the gel in a mixture composed of 10  mM ABTS and 
200 mM phosphate buffer (pH 5.0) at room temperature. 
After focusing completion, trichloroacetic acid was used 
for gel fixation, while Coomassie Brilliant Blue was uti-
lized for staining the protein bands. An IEF marker in the 
pI range from 3.6 to 9.3 (Sigma-Aldrich, USA) was used.

Determination of fibers content
The modified methods of Kirk and Obst (1988) and Van 
Soest et al. (1991) were used for the determination of the 
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hemicellulose, cellulose, and lignin contents. Initially, a 
solution of neutral detergent and Na2SO3 was used for 
the treatment of the dried ground samples under reflux 
conditions to remove the soluble sugars, proteins, lipids, 
and vitamins, and the obtained biomass presented neu-
tral detergent fibers (NDFs). Hemicellulose was then 
removed with a solution of acidic detergent and the con-
tent of acidic detergent fibers (ADFs) was measured. The 
difference in mass between the NDFs and ADFs repre-
sented the hemicellulose content in the samples. ADFs 
were further used for the determination of the lignin con-
tent (LC) by the incubation of the samples in 72% H2SO4 
at 30 °C and hydrolysis at 120 °C. The LC was expressed 
as the percentage present in the original sample. Finally, 
the cellulose content was calculated as the difference 
between the ADFs and LC.

Statistical analyses
All the experiments were done in three replicates and 
the results were expressed as mean ± standard error. 
One-way analysis of variance (ANOVA) and Tukey’s test 
were performed using STATISTICA, version 6.0 (Stat-
Soft, Inc., Tulsa, USA) to test any significant differences 

between the means. Statistical significance was declared 
at p < 0.05.

Results
Ligninolytic enzymes
Pleurotus eryngii and P. pulmonarius produced all three 
ligninolytic enzymes during their cultivation on the 
tested pomiculture residues (Fig. 1). However, laccase was 
the dominant synthesized enzyme on all three lignocellu-
losics fermented by both studied species, but with several 
times higher activity obtained in P. pulmonarius. Thus, 
the maximal laccase activity (40,494.88 ± 119.45  U  L−1) 
was measured after cultivation on grapevine sawdust, 
whereas slightly lower values were observed on plum 
and raspberry sawdusts. Approximately, fivefold lower 
levels of laccase activity was obtained on grapevine and 
raspberry sawdusts fermented by P. eryngii (8077.36 and 
5938.57 U L−1, respectively), while plum sawdust did not 
favor the synthesis of this enzyme as only 606.29 U  L−1 
was measured. Plum sawdust also proved to be an unfa-
vorable substrate for the induction of Mn-dependent 
peroxidase and versatile peroxidase activity, especially 
in P. eryngii, while grapevine sawdust was again optimal 
as in the case of laccases. The maximum level of MnP 

Fig. 1  Activity of Mn-dependent peroxidases, versatile peroxidases and laccases of Pleurotus spp. depending on the type of pomiculture residues. 
The values with the same superscript letter (for each enzyme) are not significantly different (p < 0.05)
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activity was measured in P. pulmonarius after raspberry 
sawdust fermentation (479.17 ± 9.47  U  L−1), while a 
slightly lower value was obtained on grapevine sawdust 
fermented with the same species (473.48 ± 7.58  U  L−1). 
Grapevine sawdust also favored the synthesis of MnP in 
P. eryngii reaching an activity level of 344.70 U L−1, while 
for plum sawdust the activity level of this enzyme was 
tenfold lower (Fig. 1). Grapevine was particularly favora-
ble for the VP production in both Pleurotus species, but 
the absolute maximum of 1010.10 U L−1 was measured in 
P. eryngii, while the value (540.40 ± 44.30 U L−1) obtained 
for P. pulmonarius was twice as low. Significantly lower 
VP activity of approximately 180.00  U  L−1 was meas-
ured on the other two lignocellulosic substrates with 
the exception of plum sawdust fermented with P. eryn-
gii when a minimum of only 25.85  U  L−1 was obtained 
(Fig. 1).

Due to the highest activity, laccases were chosen for 
further detailed profiling. The obtained laccase zymo-
gram not only varied among the studied species, but also 
differed for each species on various substrates (Fig.  2). 
Thus, the number, intensity, and pI of the visualized lac-
case isoforms obtained for the species varied on differ-
ent substrates. However, it should be emphasized that 
the number and intensity of isoforms positively corre-
lated with the measured activity as the highest number 

of isoforms was visualized on grapevine sawdust formerly 
shown as the best inducer of activity in both the studied 
species. Hence, several isoenzymes with pIs in the range 
of 3.6 and 4.6 were synthesized by both P. eryngii and P. 
pulmonarius, while one less intense isoform with a pI 
of 5.1 was visualized only for P. eryngii (Fig. 2). Both of 
the tested species also produced isoenzymes with a pI of 
about 3.6 on plum and raspberry sawdusts which were 
visualized as strong bands, while differing in bands with 
higher pIs. Thus, isoenzymes with a pI of about 5.1 were 
active in both the tested species during the fermenta-
tion of plum sawdust, inducing one more isoform in P. 
pulmonarius with a pI of about 4.6. The highest diversity 
between the tested species in terms of secreted isoforms 
was obtained on raspberry sawdust as only one isoform 
was synthesized by P. Pulmonarius, while several bands 
of pIs between 3.6 and 5.1 were visualized for P. eryngii 
(Fig. 2).

Cellulolytic enzymes
All the cellulolytic enzymes examined in the study 
were produced by the tested Pleurotus species on 
all pomiculture wastes (Fig.  3). However, P. pul-
monarius convincingly dominated in the synthe-
sis of all four enzymes compared to P. eryngii. 
Raspberry sawdust proved to be the best substrate 

Fig. 2  Isoelectric focusing pattern of Pleurotus eryngii (1) and P. pulmonarius (2) laccases after the fermentation of pomiculture residues
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for endo- and exo-glucanase as well as xylanase syn-
thesis, while grapevine sawdust was the most favora-
ble for β-glucosidase production. Xylanase was the 
most dominant enzyme with activity peaks as high as 
15,746.35 U L−1 in P. pulmonarius and 9771.53 U L−1 
in P. eryngii after cultivation on raspberry sawdust. 
However, the activity of this enzyme was signifi-
cantly lower on two other lignocellulosic substrates 
with a minimum of 1371.65 U L−1 obtained on grape-
vine sawdust fermented by P. eryngii (Fig.  3). Rasp-
berry sawdust induced the synthesis of highly active 
endo-glucanase isoforms, especially in P. pulmo-
narius, with the value of 9741.56  U  L−1, which was 
almost twice as high as in P. eryngii. Significantly 
lower endo-glucanase activity was measured after 
the fermentation of grapevine and plum sawdust by 
both species, ranging from 1447.16 to 2216.33 U  L−1. 
The exo-glucanase activity synthesized by both 
Pleurotus species on all the studied substrates was 
many-fold lower than endo-glucanase and xylanase, 
but the same substrate enhanced its activity maxi-
mally. Thus, the peaks of exo-glucanase activity in 
P. pulmonarius (836.62 ± 49.95  U  L−1) and P. eryn-
gii (597.17 ± 52.18  U  L−1) were achieved after rasp-
berry sawdust fermentation, while plum sawdust was 
the least favorable for its synthesis (165.37 U L−1 and 
202.29  U  L−1, respectively). Extremely low activity of 
β-glucosidase was observed for both the studied spe-
cies on the tested lignocellulose residues, ranging 
from 44.47 U  L−1 synthesized by P. eryngii on grape-
vine sawdust to 166.11  U  L−1 produced by P. pulmo-
narius on the same substrate (Fig. 3).

Depolymerization of lignocellulosic residues
The total dry matter loss of the tested pomiculture resi-
dues after the cultivation of Pleurotus eryngii and P. 
pulmonarius was species- and substrate-dependent 
(Table  1). It ranged from 10.63% in grapevine sawdust 
fermented by P. eryngii to 22.17% in raspberry sawdust 
fermented by P. pulmonarius. The tested species dif-
fered significantly in the induction of dry matter loss 
on the grapevine- and raspberry sawdusts, in contrast 
to plum sawdust, where a uniform dry matter loss of 
approximately 12% was observed. The extent of delig-
nification of the tested pomiculture residues was rather 
substrate- than species-dependent, varying between 
6.44 and 23.72% in the grapevine and raspberry saw-
dusts, respectively, after fermentation by P. pulmonarius 
(Table  1). Slightly lower delignification values were also 
recorded after fermentation of raspberry sawdust with P. 
eryngii (19.82%) and plum sawdust with P. pulmonarius 
(19.67%). A significantly lower lignin consumption was 
observed following the cultivation of both the studied 
species on grapevine sawdust. The highest percentage of 
holocellulose was removed from the plum sawdust by P. 
pulmonarius which consumed 24.89% of cellulose and 
59.44% of hemicellulose (Table  1). On the other hand, 
the lowest level of cellulose degradation was obtained 
after the cultivation of P. eryngii on raspberry sawdust 
which, together with a high percentage of delignification, 
was reflected in the high selectivity index (1.27). Slightly 
lower delignification selectivity was obtained after rasp-
berry fermentation by P. pulmonarius, while much lower 
values were noted on the grapevine sawdust (Table 1).

Discussion
This study provided complete lignocellulolytic pro-
files of Pleurotus eryngii and P. pulmonarius during the 
solid-state fermentation of three common pomiculture 
lignocellulosic wastes. Despite the quantities produced 
annually, especially in traditionally fruit-growing regions, 
as well as the evident disposal problems, grapevine-, 
plum- and raspberry sawdusts have not yet been studied 
as substrates for mushroom cultivation and inducers of 
their lignocellulolytic enzyme cocktails.

The presented results make a significant contribution 
to the profiling of the ligninolytic potential of well-known 
white-rot species but on new lignocellulosic substrates, 
thus clarifying the connection between enzymes pro-
duction and lignin degradation. Numerous studies have 
investigated the factors influencing the expression of 
the ligninolytic enzyme system and have shown that the 
selection of species/strain, the composition of lignocel-
lulosic material, as well as the type and duration of cul-
tivation significantly affect the activity of ligninolytic 

Fig. 3  Activity of endo-glucanases, exo-glucanases, xylanases 
and β-glucosidases of Pleurotus spp. depending on the type of 
pomiculture residues. The values with the same superscript letter (for 
each enzyme) are not significantly different (p < 0.05)
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enzymes (Richard 1996; de Souza et al. 1999; Arora and 
Gill 2000; Fenice et  al. 2003; Songulashvili et  al. 2006). 
Variations in the substrate type promote the synthesis 
of various oxidizing enzymes as well as their contribu-
tion to complex enzyme cocktails (Elisashvili et al. 2008; 
Simonić et  al. 2010). Numerous studies have already 
shown the high dependence of the efficiency of the ligni-
nolytic enzyme system of Pleurotus spp. on the type of 
lignocellulosic waste (Adebayo and Martínez-Carrera 
2015; Ćilerdžić et al. 2017). Also, Dong et al. (2013) noted 
extremely high MnP activity (150,000 U L−1) in P. ostrea-
tus after cultivation on sugar cane substrate, and Xie 
et  al. (2016) after the fermentation of ramie stalks with 
P. eryngii (~ 75,000 U L−1), which are far higher than the 
maximum values obtained in our study. On the other 
hand, Akpinar and Urek (2014), Inácio et al. (2015), and 
Wyman et al. (2018) reported similar MnP activities (in 
the range of 70–570 U  L−1) synthesized by P. eryngii, P. 
pulmonarius and P. ostreatus during cultivation on apri-
cot and pomegranate wastes from fruit juice production, 
as well as orange peels and cornstalks. The influence of 
plant waste composition and cultivation type on the 
activity of Mn-oxidizing peroxidases in many white-rot 
fungi has been the subjects of numerous studies (Stajić 
et  al. 2004; Palma et  al. 2016; Sekan et  al. 2019). The 
species of the genus Pleurotus tested in our study were 
incomparably better VP producers than those reported 
by Stajić et  al. (2004) after the submerged fermentation 
of mandarin peels and solid-state fermentation of grape-
vine sawdust. On the other hand, significantly higher 
VP activities were reported by Palma et al. (2016), after 
the liquid cultivation of P. eryngii in a glucose-enriched 
medium (~ 1800  U  L−1), and after its solid-state culti-
vation on banana peels (~ 10,000  U  L−1). However, P. 
eryngii HAI 1017 synthesized slightly lower active VP 
isoforms than P. eryngii HAI 507 after the solid-state fer-
mentation of wheat straw (Knežević et  al. 2013), which 
at the same time was several-fold higher than those of P. 
ostreatus HAI 592 from the same study. Laccases have 
been the subject of extensive research for many years, 
and recently fungal laccases have become particularly 
interesting due to their exceptional potential for a wide 
range of applications in numerous biotechnological pro-
cesses (Paramjeet et  al. 2018). Recent research studies 
are especially focused on the application of genetic engi-
neering to obtain enzymes with the best characteristics, 
such as higher activity, stability, and yield. However, con-
siderable emphasis is still placed on optimizing the cul-
tivation conditions for the production of highly active 
forms of laccase in white-rot fungi known to be the best 
producers of this enzyme. In contrast to the activities of 
laccases produced during the submerged cultivation of 
P. eryngii and P. pulmonarius in a mandarin peel-based 

medium and their solid cultivation on grapevine saw-
dust (Stajić et al. 2006), the values obtained in our study 
were considerably higher. Likewise, glucose and fructose 
stimulated the synthesis of highly active isoforms of this 
enzyme in P. sajor-caju (37,000 U L−1 and 36,000 U L−1, 
respectively) (Bettin et al. 2009), sugar cane residues in P. 
ostreatus (~ 35,000 U L−1) (Dong et al. 2013), ramie stalks 
in P. eryngii (~ 15,000 U L−1) (Xie et al. 2016) and orange 
peels in P. pulmonarius (~ 10,000  U  L−1) (Inácio et  al. 
2015; de Freitas et al. 2017), but to a considerably lower 
degree than in our study.

A positive correlation between enzymes activities and 
the extent of depolymerization was not observed in this 
study, i.e., higher enzyme activity did not mean a higher 
degree of degradation of the pomiculture residues, which 
was in line with the results of previous studies (Knežević 
et  al. 2013, 2016; Ćilerdžić et  al. 2016b, 2017). This can 
be explained by the length of cultivation, i.e., by the point 
at which the activity of some ligninolytic enzymes could 
significantly decrease. Namely, the onset of enzymes syn-
thesis corresponds to the so-called colonization phase 
associated with cell wall opening and the initiation of 
lignin degradation by reactive oxygen species, while 
enzymatic delignification occurs much later. Due to the 
lack of clarity regarding the lignocellulose degradation 
mechanism, today a large number of studies focus on 
this issue in the aim of creating more efficient processes, 
i.e., reducing time and energy consumption. An analysis 
of the genome sequences of ligninolytic enzyme produc-
ers showed the absence of a unique set of these enzymes, 
with composition differing from species to species (Par-
amjeet et  al. 2018). Several genes in the fungal genome 
encode laccase synthesis, including those that are contin-
uously expressed and those whose transcription depends 
on environmental conditions and the physiological pre-
disposition of the species (Collins and Dobson 1997; 
Palmieri et  al. 2000; Jiang et  al. 2013). Previous studies 
have also shown the dependence of the number of lac-
case isoforms produced in Pleurotus spp. on the culti-
vation substrate type (Sannia et  al. 1986; Palmieri et  al. 
1993; Youn et  al. 1995; Muñoz et  al. 1997a). Thus, the 
number of isoforms in P. eryngii ranged from two, after 
submerged cultivation in glucose/ammonium tartrate 
medium and the solid-state fermentation of wheat straw 
(Muñoz et al. 1997b; Ćilerdžić et al. 2017), to three, fol-
lowing the solid-state fermentation of grapevine sawdust 
(Stajić et al. 2006), up to four after submerged cultivation 
in potato/yeast extract medium (Palmieri et  al. 1997). 
Similarly, P. pulmonarius synthesized only one iso-
form on wheat straw and two on wheat bran (Marques 
de Souza and Peralta 2003; Ćilerdžić et al. 2017), and P. 
ostreatus three isoforms after the fermentation of grape-
vine sawdust (Stajić et  al. 2006), while Palmieri et  al. 
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(1997) detected as many as four isoforms after cultiva-
tion in dextrose/potato extract/yeast extract medium. On 
the other hand, during cultivation in the same medium, 
P. florida and P. nebrodensis produced two and three iso-
forms, respectively (Das et al. 2001; Yuan et al. 2016).

Previous studies have already shown the potential of 
species of the genus Pleurotus to hydrolyze various lig-
nocellulosic wastes (Zhang et  al. 2002; Salmones et  al. 
2005; Alborés et  al. 2006; Goyal and Sony, 2011). Thus, 
Goyal and Sony (2011) noted the ability of P. florida, P. 
ostreatus, and P. sajor-caju to synthesize endo- and exo-
cellulases as well as β-glucosidases during submerged 
cultivation in a synthetic medium with carboxymethyl 
cellulose or wheat straw as carbon sources. However, P. 
florida proved to be the best producer of highly active 
β-glucosidases, whose activity on the 5th day of cultiva-
tion reached the level of 1066 U L−1. On the other hand, 
Ekundayo et  al. (2017) showed the high potential of P. 
pulmonarius DBUI002 and P. ostreatus DBUI14 to syn-
thesize highly active endo-cellulases (~ 9000  U  L−1 and 
15,000 U L−1, respectively), exo-cellulases (~ 9000 U L−1 
and 13,000  U  L−1, respectively) and β-glucosidase in 
particular (~ 32,000  U  L−1) after 9  days of fermenta-
tion of corn cobs and rice bran. However, the P. pulmo-
narius strain used by Inácio et  al. (2015) produced far 
less active endo-cellulases (600  U  L−1) as well as xyla-
nases (700  U  L−1) even after 45  days of cultivation on 
orange peels. Sherief et  al. (2010) also detected low 
β-glucosidase activities in P. ostreatus (90 U  L−1) and P. 
sajor-caju (87 U L−1) after the solid-state fermentation of 
banana peels. The observed differences in the activity of 
cellulolytic enzymes in Pleurotus spp. can be explained 
by the genetic basis of the species/strain, the type, and 
composition of the substrate, as well as the fermentation 
period. Thus, Jørgensen et al. (2007) and Goyal and Sony 
(2011) explained the decrease or even loss of activity of 
these enzymes within a certain cultivation period by their 
inactivation, denaturation, or degradation.

Conclusions
The results from this study showed, for the first time, that 
lignocellulosic residues (especially grapevine and rasp-
berry sawdust) can be successfully used as substrates for 
the cultivation of P. pulmonarius and P. eryngii. When 
treated with Pleurotus spp., these commonly available 
pomiculture residues, have the potential to generate 
byproducts of nutritional and medicinal value, in addi-
tion to the production of lignocellulosomes that can be 
used in numerous biotechnological processes, such as 
bioethanol production. The cultivation of Pleurotus spp. 
on lignocellulosics results in the consumption of part of 
the fermentable sugars, which suggests that additional 

research is needed to optimize the resulting cocktail for 
the treatment of the intact lignocellulosic substrate.
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