Zhou H, Liao X, Wang T, Du G, Chen J: Enhanced L-phenylalanine biosynthesis by co-expression of pheAfbr and aroFwt. Bioresour Technol 2010, 101: 4151–4156. 10.1016/j.biortech.2010.01.043
Article
CAS
Google Scholar
Liu DX, Fan CS, Tao JH, Liang GX, Gao SE, Wang HJ, Li X, Song DX: Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis. World J Gastroenterol 2004, 10: 3683–3687.
CAS
Google Scholar
Fernandes BCM, Mateo C, Kiziak C, Chmura A, Wacker J, van Rantwijk F, Stolz A, Sheldon RA: Nitrile hydratase activity of a recombinant nitrilase. Adv Synth Catal 2006, 348: 2597–2603. 10.1002/adsc.200600269
Article
CAS
Google Scholar
Kamal A, Kumar MS, Kumar CG, Shaik TB: Bioconversion of acrylonitrile to acrylic acid by Rhodococcus ruber strain AKSH-84. J Microbiol Biotechnol 2011,21(1):37–42. 10.4014/jmb.1006.06044
Article
CAS
Google Scholar
Banerjee A, Dubey S, Kaul P, Barse B, Piotrowski M, Banerjee UC: Enantioselective nitrilase from Pseudomonas putida : cloning, heterologous expression, and bioreactor studies. Mol Biotechnol 2009,41(1):35–41. 10.1007/s12033-008-9094-z
Article
CAS
Google Scholar
Wu SJ, Fogiel AJ, Petrillo KL, Hann EC, Mersinger LJ, DiCosimo R, O'Keefe DP, Ben-Bassat A, Payne MS: Protein engineering of Acidovorax facilis 72W nitrilase for bioprocess development. Biotechnol Bioeng 2007, 97: 689–693. 10.1002/bit.21289
Article
CAS
Google Scholar
Yang CS, Wang XD, Wei DZ: A new nitrilase-producing strain named Rhodobacter sphaeroides LHS-305: biocatalytic characterization and substrate specificity. Appl Biochem Biotechnol 2011, 165: 1556–1567. 10.1007/s12010-011-9375-z
Article
CAS
Google Scholar
Zhang ZJ, Xu JH, He YC, Ouyang LM, Liu YY: Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from Alcaligenes sp. ECU0401 and its potential for (R)-(−)-mandelic acid production. Bioproc Biosyst Eng 2013,34(3):315–322. 10.1007/s00449-010-0473-z
Article
Google Scholar
Sosedov O, Matzer K, Bürger S, Kiziak C, Baum S, Altenbuchner J, Chmura A, van Rantwijk F, Stolz A: Construction of recombinant Escherichia coli catalysts which simultaneously express an (S)-oxynitrilase and different nitrilase variants for the synthesis of (S)-mandelic acid and (S)-mandelic amide from benzaldehyde and cyanide. Adv Synth Catal 2009, 351: 1531–1538. 10.1002/adsc.200900087
Article
CAS
Google Scholar
Zhang ZJ, Pan J, Liu JF, Xu JH, He YC, Liu YY: Significant enhancement of (R)-mandelic acid production by relieving substrate inhibition of recombinant nitrilase in toluene-water biphasic system. J Biotechnol 2011, 152: 24–29. 10.1016/j.jbiotec.2011.01.013
Article
CAS
Google Scholar
Qiu J, Su EZ, Wang W, Wei DZ: High yield synthesis of D-phenylglycine and its derivatives by nitrilase mediated dynamic kinetic resolution in aqueous-1-octanol biphasic system. Tetrahedron Lett 2014,55(8):1448–1451. 10.1016/j.tetlet.2014.01.044
Article
CAS
Google Scholar
Liu L, Guo QX: Use of quantum chemical methods to study cyclodextrin chemistry. J Incl Phenom Macro Chemistry 2004,50(1–2):95–103. 10.1007/s10847-003-8847-3
Article
CAS
Google Scholar
Yue HY, Yuan QP, Wang WH: Enhancement of L-phenylalanine production by β-cyclodextrin. J Food Eng 2007, 79: 878–884. 10.1016/j.jfoodeng.2006.03.007
Article
CAS
Google Scholar
Mine Y, Zhang L, Fukunaga K, Sugimura Y: Enhancement of enzyme activity and enantioselectivity by cyclopentyl methyl ether in the transesterification catalyzed by Pseudomonas cepacia lipase co-lyophilized with cyclodextrins. Biotechnol Lett 2005,27(6):383–388. 10.1007/s10529-005-1527-1
Article
CAS
Google Scholar
Wang HL, Li GN, Li MY, Wei DZ, Wang XD: A novel nitrilase from Rhodobacter sphaeroides LHS-305: cloning, heterologous expression and biochemical characterization. World J Microbiol Biotechnol 2014, 30: 245–252. 10.1007/s11274-013-1445-7
Article
Google Scholar
Yeom SJ, Kim HJ, Lee JK, Kim DE, Oh DK: An amino acid at position 142 in nitrilase from Rhodococcus rhodochrous ATCC 33278 determines the substrate specificity for aliphatic and aromatic nitriles. Biochem J 2008, 415: 401–407. 10.1042/BJ20080440
Article
CAS
Google Scholar
Shen Y, Wang M, Zhang L, Ma Y, Ma B, Zheng Y, Liu H, Luo JM: Effects of hydroxypropyl-β-cyclodextrin on cell growth, activity, and integrity of steroid-transforming Arthrobacter simplex and Mycobacterium sp . Appl Microbiol Biotechnol 2011,90(6):1995–2003. 10.1007/s00253-011-3214-6
Article
CAS
Google Scholar
Xue YP, Liu ZQ, Xu M, Wang YJ, Zheng YG, Shen YC: Enhanced biotransformation of (R, S)-mandelonitrile to (R)-(−)-mandelic acid with in situ production removal by addition of resin. Biochem Eng J 2010, 53: 143–149. 10.1016/j.bej.2010.10.009
Article
CAS
Google Scholar
Gröger H: Enzymatic routes to enantiomerically pure aromatic α-hydroxy carboxylic acids: a further example for the diversity of biocatalysis. Adv Synth Catal 2001, 343: 547–558. 10.1002/1615-4169(200108)343:6/7<547::AID-ADSC547>3.0.CO;2-A
Article
Google Scholar
Tang K, Miao JB, Zhou T, Liu YB, Song LT: Reaction kinetics in reactive extraction for chiral separation of α-cyclohexyl-mandelic acid enantiomers with hydroxypropyl-β-cyclodextrin. Chem Eng Sci 2011,66(3):397–404. 10.1016/j.ces.2010.10.044
Article
CAS
Google Scholar
Aree T, Arunchai R, Koonrugsa N: Fluorometric and theoretical studies on inclusion complexes of β-cyclodextrin and D-, L-phenylalanine. Spectrochim Acta A 2012, 96: 736–743. 10.1016/j.saa.2012.07.049
Article
CAS
Google Scholar