Skip to main content
Figure 1 | Bioresources and Bioprocessing

Figure 1

From: Programming the group behaviors of bacterial communities with synthetic cellular communication

Figure 1

Cellular communication in bacteria. (A) The LuxI/LuxR quorum sensing (QS) system in the Gram-negative bacterium Vibrio fischeri. The system consists of the genes luxI and luxR and the cognate promoter PluxI and PluxR. Its signaling molecule is the acyl-homoserine lactone (AHL) 3OC6HSL. (B) The Agr QS system in the Gram-positive bacterium Staphylococcus aureus. It consists of the genes, agrD, agrB, agrC, and agrA and the cognate promoter P2. The auto-inducing peptide (AIP) is the signaling molecule of the system. (C) An engineered communication module adapted from the wild-type LuxI/LuxR system in (A). By expressing luxI, the sender cell (left) produces the signal AHL that diffuses to the extracellular milieu and further into the receiver cell (right) to alter the expression of the downstream genes X. (D) A synthetic communication module built from the Agr system in (B). The sender cell (left) produces and secretes the signaling molecule AIP that is sensed by the receiver cell (right), resulting in the expression shift of the gene X in the receiver cell.

Back to article page