World Energy Outlook (2012) Executive summary (2012). International Energy Agency, Paris, France
Google Scholar
Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476:43–50
Article
CAS
Google Scholar
Pu Y, Cao S, Ragauskas AJ (2011) Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy Environ Sci 4:3154–3166
Article
CAS
Google Scholar
Glasser WG, Glasser HR (1974) Simulation of reactions with lignin by computer (Simrel). II A model for softwood lignin Holzforschung 28:5–11
CAS
Google Scholar
Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28:237–259
Article
CAS
Google Scholar
Stenberg K, Tengborg C, Galbe M, Zacchi G, Palmqvist E, Hahn-Hagerdal B (1998) Recycling of process streams in ethanol production from softwoods based on enzymatic hydrolysis. Appl Biochem Biotechnol 70–72:697–708
Article
Google Scholar
Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100:2411–2418
Article
CAS
Google Scholar
Bhandari N, Macdonald DG, Bakhshi NN (1984) Kinetic studies of corn stover saccharification using sulphuric acid. Biotechnol Bioeng 26:320–327
Article
CAS
Google Scholar
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686
Article
CAS
Google Scholar
Sannigrahi P, Kim DH, Jung S, Ragauskas A (2011) Pseudo-lignin and pretreatment chemistry. Energy Environ Sci 4:1306–1310
Article
CAS
Google Scholar
Koo BW, Min BC, Gwak KS, Lee SM, Choi JW, Yeo H, Choi IG (2012) Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass Bioenerg 42:24–32
Article
CAS
Google Scholar
Pan X, Xie D, Yu RW, Saddler JN (2008) The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnol Bioeng 101:39–48
Article
CAS
Google Scholar
Ohlrogge J, Allen D, Berguson B, DellaPenna D, Shachar-Hill Y, Stymne S (2009) Driving on biomass. Science 324:1019–1020
Article
CAS
Google Scholar
Eckert C, Liotta C, Ragauskas A, Hallett J, Kitchens C, Hill E, Draucker L (2007) Tunable solvents for fine chemicals from the biorefinery. Green Chem 9:545–548
Article
CAS
Google Scholar
Zakzeski J, Jongerius AL, Bruijnincx PCA, Weckhuysen BM (2012) Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen. ChemSusChem 5:1602–1609
Article
CAS
Google Scholar
Rana D, Rana V, Ahring BK (2012) Producing high sugar concentrations from loblolly pine using wet explosion pretreatment. Bioresour Technol 121:61–67
Article
CAS
Google Scholar
Ahring BK, Munck J (2009) Method for treating biomass and organic waste with the purpose of generating desired biologically based products, US Patent 0178671A1., 11 Jul 2013
Google Scholar
Ahring BK, Jensen K, Nielsen P, Bjerre AB, Schmidt AS (1996) Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria. Bioresour Technol 58:107–113
Article
CAS
Google Scholar
Regalbuto JR (2009) Cellulosic biofuels—got gasoline? Science 325:822–824
Article
Google Scholar
Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450
Article
CAS
Google Scholar
Balakshin MY, Capanema EA, Chang HM (2007) MWL fraction with a high concentration of lignin-carbohydrate linkages: isolation and 2D NMR spectroscopic analysis. Holzforschung 61:1–7
Article
CAS
Google Scholar
Laskar DD, Jourdes M, Patten AM, Helms GL, Davin LB, Lewis NG (2006) The Arabidopsis cinnamoyl CoA reductase irx4 mutant has a delayed but coherent (normal) program of lignification. Plant J 48:674–686
Article
CAS
Google Scholar
Jourdes M, Cardenas CL, Laskar DD, Moinuddin SGA, Davin LB, Lewis NG (2007) Plant cell walls are enfeebled when attempting to preserve native lignin configuration with poly-p-hydroxycinnamaldehydes: evolutionary implications. Phytochemistry 68:1932–1956
Article
CAS
Google Scholar
Ralph JM, Jane M, Ralph SA, Hatfield RD, Lu F, Ede RM, Peng J, Landucci LL (1999) Solution state NMR of lignins. In: Argyropoulos DS (ed) Advances in lignocellulosics characterization. Atlanta, GA, TAPPI Press, pp 55–108
Google Scholar
Lewis NG, Davin LB (1998) The biochemical control of monolignol coupling and structure during lignan and lignin biosynthesis. In: Lignin and lignan biosynthesis, 697th edn, ACS Symposium Series, American Chemical Society., pp 334–361
Chapter
Google Scholar
Brender EV, Belanger RP, Malac BF (1981) Loblolly pine. In: Choices in silviculture for American forests. Society of Americal Foresters, Washington, DC, pp 37–45
Google Scholar
Holtman KM, Chang HM, Jameel H, Kadla JF (2006) Quantitative 13C NMR characterization of milled wood lignins isolated by different milling techniques. J Wood Chem Technol 26:21–34
Article
CAS
Google Scholar
Sannigrahi P, Ragauskas A, Miller S (2008) Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine. Bioenerg Res 1:205–214
Article
Google Scholar
Pan X, Xie D, Gilkes N, Gregg DJ, Saddler JN (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 121–124:1069–1080
Article
Google Scholar
Huang F, Singh PM, Ragauskas AJ (2011) Characterization of milled wood lignin (MWL) in loblolly pine stem wood, residue and bark. J Agric Food Chem 59:12910–12916
Article
CAS
Google Scholar
Chen G, Fu S, Liu R, Zhan H, Chen Y (2010) Analysis of structural changes of masson pine lignin reacted with superoxide anion radical using NMR spectroscopy. BioResources 5:1156–1163
CAS
Google Scholar
Ibarra D, Chavez MI, Renecoret J, Rio JCD, Gutierrez A, Romero J, Camarero S, Martinez MJ, Jimenez-Barbero J, Martinez A (2007) Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance. Fourier transform infrared and pyrolysis-gas chromatography/mass spectrometry study J Agric Food Chem 55:3477–3490
CAS
Google Scholar
Akim LG, Colodette JL, Argyropoulos DS (2001) Factors limiting oxygen delignification of kraft pulp. Can J Chem 79:201–210
CAS
Google Scholar
Sebestyen Z, Jakab E, May Z, Sipos B, Reczey K (2013) Thermal behaviour of native, washed and steam exploded lignocellulosic biomass samples. J Anal Appl Phys 101:61–71
CAS
Google Scholar
Jiang L, Yaobing H, Qingxiang G, You F (2014) Production of acetic acid from lignocellulosic biomass in the presence of mineral acid and oxygen under hydrothermal condition. Acta Chim Sinica 72:1223–1227
Article
Google Scholar
Guay DF, Cole BJW, Fort RC, Hausman MC, Genco JM, Elder TJ, Overly KR (2001) Mechanisms of oxidative degradation of carbohydrates during oxygen delignification. II. Reaction of photochemically generated hydroxyl radicals with methyl β-cellobioside. J Wood Chem Technol 21:67–79
Article
CAS
Google Scholar
Munter R (2001) Advanced oxidation processes - current status and prospects. Proc Estonian Acad Sci Chem 50:59–80
CAS
Google Scholar
Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz P, Marita J, Hatfield R, Ralph S, Christensen J, Boerjan W (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochem Rev 3:29–60
Article
CAS
Google Scholar
Cao S, Pu Y, Studer M, Wyman C, Ragauskas AJ (2012) Chemical transformations of Populus trichocarpa during dilute acid pretreatment. RSC Adv 2:10925–10936
Article
CAS
Google Scholar
Sederoff RR, MacKay JJ, Ralph J, Hatfield RD (1999) Unexpected variation in lignin. Curr Opin Plant Biol 2:145–152
Article
CAS
Google Scholar
Mittal A, Chatterjee SG, Scott GM, Amidon TE (2009) Modeling xylan solubilization during autohydrolysis of sugar maple and aspen wood chips: reaction kinetics and mass transfer. Chem Eng Sci 64:3031–3041
Article
CAS
Google Scholar
Ke J, Laskar D, Singh D, Chen S (2011) In situ lignocellulosic unlocking mechanism for carbohydrate hydrolysis in termites: crucial lignin modification. Biotechnol Biofuels 4:17. doi:10.1186/1754-6834-4-17
Article
CAS
Google Scholar