Skip to content

Advertisement

  • Review
  • Open Access

Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): the latest development

Bioresources and Bioprocessing20185:12

https://doi.org/10.1186/s40643-018-0200-1

  • Received: 19 February 2018
  • Accepted: 18 March 2018
  • Published:

Abstract

Although rational genetic engineering is nowadays the favored method for microbial strain improvement, random mutagenesis is still in many cases the only option. Atmospheric and room-temperature plasma (ARTP) is a newly developed whole-cell mutagenesis tool based on radio-frequency atmospheric-pressure glow discharge plasma which features higher mutation rates than UV radiation or chemical mutagens while maintaining low treatment temperatures. It has been successfully applied on at least 24 bacterial and 14 fungal species, but also on plants, dinoflagellates, and other microbial communities for the improvement of tolerance to medium components, to increase cellular growth and production of cellular biomass, to enhance enzyme activity, and to increase the production of various chemicals. Achievements like 385.7% of acetic acid production enhancement in Acetobacter pasteurianus give this new mutagenesis tool a promising future. However, certain questions remain regarding optimal operational conditions, the effects at subcellular levels, and standard operation procedures, which need to be addressed to facilitate applications of ARTP in microbial breeding and other fields such as evolution of enzymes.
Graphical Abstract image

Keywords

  • Random mutagenesis
  • Atmospheric and room-temperature plasma
  • Mutation mechanism
  • Strain breeding
  • Industrial application

Introduction

Genetic enhancement of whole-cell systems is of great interest in microbial biotechnology. Rational design in genetic engineering has become during the last decades the preferred method of choice with the CRISPR/Cas9 system being the most recent advance (Barrangou and Horvath 2017). However, random mutagenesis is still in many cases the only feasible approach, for instance, if the corresponding genomic locus to the desired phenotype is unknown or if a complex genetic regulation is underlying. Random mutagenesis is also superior from a commercial standpoint as altered strains are classified as genetically unmodified which requires no attention to legal regulations. Besides, products labeled as “GMO free” are currently much better accepted by the public (Twardowski and Małyska 2015).

Although random mutagenesis can be done biologically using methods like proofreading-deficient polymerase (Kim et al. 2013), it is typically achieved by application of chemical mutagens like alkylating agents (Lackmann and Bandow 2014) or azides (Yolmeh and Khomeiri 2017) and physical mutagens like conventional radiations (Yolmeh and Khomeiri 2017) or heavy particle beams (Lackmann and Bandow 2014). The induced DNA damages are subsequently repaired by the SOS system leading to DNA alterations (Bridges 2001). However, almost all tools for random mutagenesis are to a certain extent risky to handle. Whereas chemical mutagens expose the user to high (e.g., ethyl methanesulfonate and methylnitronitrosoguanidine) or very high toxicity (e.g., ethidium bromide and sodium azide), radiation (e.g., X-ray and γ-ray) exposes the user to a permanent danger which requires additional control measures such as radiation badges and radiation barriers. In addition, the generation of radiation requires often bulky and expensive equipment, specialized knowledge for operation and additional security measures to restrict access.

Physical plasmas are fully or partially ionized gases which are consisting of neutral and charged particles. They are generally classified into high- and low-temperature plasmas with variations in working gas (e.g., helium, argon, nitrogen, and oxygen), pressure (0.1 Pa up to atmospheric pressure), electromagnetic field, discharge configuration, and temporal behaviors (Bogaerts et al. 2002). Radio-frequency atmospheric-pressure glow discharge plasma (RF APGD) is one of the cold atmospheric plasmas of increased interest which can be produced in between two electrodes driven by a radio-frequency power supply at atmospheric pressure (Tendero et al. 2006). Room-temperature plasma received first attention in applied research for its possible use as a sterilization method for heat-sensitive surfaces (Kramer et al. 2015). However, the sub-lethal treatment suggested also a possible application in the field of mutagenesis. In a quantitative approach using flow cytometry analysis based on the umu test, the ARTP system showed greater DNA damage with higher mutation rates than UV radiation or the application of two selected chemical mutagens (Zhang et al. 2015c). After initial studies proved the successful application of RF APGD plasma jets in microbial breeding (Wang et al. 2010), an atmospheric and room-temperature plasma mutation system (ARTP) was constructed and made commercially available. The ARTP system requires helium (> 99.99%) as a working gas and a typical electric socket as a power source. With a weight of 100 kg and a size of 33 cm × 33 cm × 33 cm, it is of manageable dimensions, requires minimal training, and produces no hazardous radiation, toxic chemicals, or any environmentally harmful waste.

Here, we summarize the progress of ARTP-induced mutagenesis with focus on the most recent reports since the last review (Zhang et al. 2014) and the progress in understanding the underlying mechanisms. In the first parts, we elucidate the technical and physico-chemical background in a comprehensive manner. Following this, we focus in the second part on the description and extensive review of the technical parameters and the combination of the ARTP with other mutagenesis methods to enable ARTP operators to understand and optimize the process. Subsequently, a summary of the biotechnological applications is given in the third part. Finally, we close with the concluding remarks to reveal knowledge gaps and future prospects.

Technical and physico-chemical background of ARTP

The ARTP mutagenesis system was initially invented by the Department of Chemical Engineering of Tsinghua University and commercialized by Si Qing Yuan Biotechnology (now Tmax Tree Co., Ltd.) with a vertically mounted RF APGD plasma jet generator as the core component (Fig. 1a) (Zhang et al. 2014). It is currently the only commercially available system and its distribution has been mainly restricted to its origin China. Inside the ARTP apparatus, helium is ionized by a radio-frequency electric field and blown through a nozzle onto a microbial sample on a metal plate fixed to an adjustable platform. The use of atmospheric-pressure plasma in this setup removes the necessity of an expensive vacuum system. Due to the low breakdown voltage, the plasma maintains discharge uniformity, generates little amounts of UV radiation, and assures, in combination with the cooling of the cathode, a biologically compatible gas temperature. A continuous gas flow ensures little mixing with the surrounding air which minimizes the generation of germicidal ozone.
Fig. 1
Fig. 1

a RF APGD plasma jet generator as the core component of the ARTP system treating a microbial sample (adapted from Zhang et al. 2014). b Typical sequence of an ARTP mutagenesis workflow

The exact cause of mutagenesis by physical plasma has not yet been fully clarified, but various experiments were carried out on isolated DNA and on DNA in vivo. Besides UV radiation, the generation of reactive chemical species was identified as the most probable cause (Li et al. 2008). Experiments on isolated plasmid DNA showed a fast degradation after RF APGD helium plasma treatment with damage severity depending on the plasma-generating conditions (Li et al. 2008). However, DNA in vivo is also protected by other biomolecules shielding the DNA from damages caused by oxidative stress. Systems like the SOS repair system in prokaryotes are aiding the damaged DNA to maintain its integrity while possibly introducing mutations. In this manner, genes involved in the SOS DNA repair system and genes that are known to respond to oxidative stress were found to be activated in response to physical plasma (Winter et al. 2013). Besides those direct interactions between reactive chemical species and DNA, also indirect reactions with other biomolecules and reactive chemical species leading to mutagenic products were suggested as possible causes for DNA base alterations and the induction of single- or double-strand breaks (Arjunan et al. 2015). While the impact of plasma on DNA is straightforward, the influence of plasma composition and the resulting critical treatment severity is more complex. The amount of UV radiation and the composition of the generated reactive chemical species depends mainly on the employed gases. While noble gases like argon or helium are generating less UV radiation, the addition of nitrogen or oxygen to noble gases increases the amount of reactive chemical species. Hydroxyl radicals (·OH), atomic oxygen (O), ozone (O3), and superoxide anions (O 2 ·− ) are the most frequently produced reactive chemical species. Furthermore, especially in contact with aqueous solutions, nitrous acid (HNO2), nitric acid (HNO3), hydroxide anions (OH), and hydrogen peroxide (H2O2) are produced (Lackmann and Bandow 2014). When using helium as a working gas, helium metastables (He*, He 2 * ), helium ions (He+, He2+), and nitrogen molecular ions (N2+) were additionally identified (Wang et al. 2012). Maintaining microbial cell functionality and integrity is required to pass on random mutations to the next generation. However, a high plasma treatment severity can cause irreparable damages to DNA, proteins, and the whole cell, therefore, requiring careful adjustment of the plasma-generating parameters. Enzyme inactivation was suggested to be mainly caused by a degradation of chemical groups, oxidation of catalytic centers, and the overall destruction of the secondary structure (Misra et al. 2016). Direct exposure to room-temperature plasma resulted also in the removal of extracellular matrix followed by etching of whole cells as shown by scanning electron microscopy (Lackmann et al. 2013). Cell etching was monitored in another study by atomic force microscopy. Extended plasma treatment eventually led to a rupture of the cell wall. In both studies, UV treatment alone did not lead to an extended damage of the cell wall (Pompl et al. 2009) which only left reactive chemical species as the primary cause.

Technical parameters

Experimental workflow

The ARTP system was designed to allow easy adaptation to different microorganisms. Therefore, a large range of parameter combinations are possible. However, not all possible parameter combinations lead to biologically compatible plasma treatment conditions. The typical workflow (Fig. 1b) starts with the preparation of a defined suspension of microorganisms followed by the ARTP treatment. Subsequently, the treated microorganisms are re-suspended, adequately diluted, and streaked out on agar plates to yield single colonies. The colonies are then screened according to the targeted phenotypes (e.g., photometric test). However, due to the multitude of parameter combinations, it can be challenging to identify optimal plasma mutation conditions leading to single, isolated colonies under maximal usage of the agar surface. Overall, the following three categories are of importance. First, there are the intrinsic but variable parameters of the ARTP system such as the helium gas flow rate (standard liter per minute, SLPM), the gap space between nozzle and sample plate (millimeter, mm), the energy input (Watt, W), and the treatment time (seconds, s). Second, the sample itself causes variations through the kind of microorganism to be manipulated, the cell/spore concentration, the used suspension liquid, and its volume. Third, the subsequent post-treatment of the sample after plasma treatment including the resuspension liquid and time, the subsequent dilution, and the volume used for spreading on agar.

ARTP system variables

For the mutagenesis of biological samples, the ARTP manufacturer suggests standard values for each adjustable parameter to achieve biologically compatible conditions and the generation of reactive chemical species. In compliance with the suggested conditions, a high density of electrons and metastable helium (He*, He2*), He+, He2+ and N2+ are generated (Zhang et al. 2014). A helium gas flow rate of 10 SLPM or higher is suggested to avoid interference between the plasma jet and surrounding air as this leads to the formation of germicidal ozone. However, in a prior study, a positive correlation between gas flow rate and the reactive chemical species concentration was shown by the increased damage after treatment of isolated plasmid DNA with plasma generated at flow rates between 5 and 30 SLPM. A 2 mm distance between sample and nozzle is recommended. Larger distances were shown to decrease the concentration of reactive chemical species as shown by the decreased damage severity with distances between 2 and 10 mm. An energy input of around 120 W is suggested to be used. The energy input was found to be positively correlated with the generation of reactive chemical species as proven earlier by damage severity of plasmid DNA treated with plasma between 10 and 120 W (Li et al. 2008). However, increased energy input leads also to a rise in temperature which is especially of significance for the survival of the whole cells. Within an energy input of 40–200 W, temperature was found to be within a biologically compatible range between 36 and 57 °C (Zhang et al. 2014). The last intrinsic parameter of the ARTP system and the most important parameter for each experimental setup is the treatment time. It is primarily used to determine the dose of the reactive chemical species to the microorganism under selected conditions. Direct treatment of isolated DNA under identical plasma-generating conditions with time variations between 0.5 to 10 min was shown to increase DNA damages (Li et al. 2008). However, it can be assumed that due to the high complexity and the presence of more sensitive molecules, the effective treatment time for whole cells is situated at a shorter exposure time. Summarizing the applied values of the operational parameters in the literature, a high variety from the suggested standard values is present. However, as some studies do not report their parameter values, a representative distribution cannot be derived. A wide variation of the helium gas flow rate can be found. While many studies selected the suggested helium gas flow rate of 10 SLPM, an equal number of studies reported a helium gas flow rate of 15 SLPM. Single studies went as low as 2 SLPM (Zong et al. 2012; Ren et al. 2017). The suggested distance between sample and nozzle of 2 mm was used in almost all reports. Single cases reported a further distance of 1 cm (Zong et al. 2012; Li et al. 2014). The energy input is a critical parameter due to its ability of heating the sample to undesirable temperatures. In the reviewed studies, the energy input was, as suggested, typically at 100 or 120 W. One single study chose a low-energy input of 40 W which might explain the extended required treatment time (Li et al. 2014). Three studies applied 180 W either for spores or filamentous fungi which are expectably less affected by higher temperatures due to their higher resistance (Xu et al. 2011, 2012; Wang et al. 2016a). Treatment time is used as the main parameter to adjust the exposure of the sample to plasma while keeping all other parameters constant. Therefore, the treatment time in the reviewed studies is mainly dependent on the other parameters preset. When other parameters were chosen to generate less reactive chemical species, this resulted in the requirement to select a longer treatment time. However, the exact impact of a single parameter cannot be estimated as in most studies multiple parameters were significantly changed and no systematic approaches were applied.

Sample-related variables

The kind of microorganism (e.g., species, Gram-positive/Gram-negative) and its current developmental stage (e.g., viable cell or spore) were shown to be of significance in case of plasma sterilization. For the ARTP, the treatment time under otherwise constant operation parameters should be evaluated for each strain by establishing a death rate curve. The suggested range for the death rate curve for bacteria is in general estimated to be effective in a range between 15 and 120 s, for Actinomycetes between 30 and 180 s, for fungi between 60 and 360 s, for yeasts between 30 and 240 s, and for microalgae between 5 and 150 s. However, as no research involving the systematic sub-lethal, helium-based plasma treatment of microorganisms via ARTP has been conducted yet, only the current findings regarding plasma sterilization combined with the time suggestions mentioned above can give a general indication for ARTP mutagenesis. Sterilization studies for different species involving Gram-positive and Gram-negative microorganisms either concluded a greater resistance of Gram-positive microorganisms or no difference at all. A study investigated the survival after plasma treatment of the Gram-negative Escherichia coli, the Gram-positive Staphylococcus aureus, the yeast Saccharomyces cerevisiae, and Bacillus subtilis spores using helium/oxygen as a working gas. While D values for E. coli and S. aureus were similar to 18 and 19 s, respectively, S. cerevisiae showed with 115 s and B. subtilis spores with 840 s, a much higher resistance to the plasma treatment (Lee et al. 2006). In another sterilization study with argon plasma involving 11 different bacterial strains, susceptibility of Gram-negative species was demonstrated to be generally greater than that of Gram-positive species. However, the susceptibility of Gram-positive species was determined to be strain specific (Ermolaeva et al. 2011). On contrary, two E. coli strains and one Listeria monocytogenes strain were exposed to dielectric barrier discharge atmospheric cold plasma with a variety of working gas mixtures containing O2, N2, and CO2. The Gram-positive L. monocytogenes was inactivated more rapidly than the Gram-negative E. coli strains and a difference in inactivation time between the E. coli strains was found (Lu et al. 2014). These inconclusive findings can be reasoned by variations in plasma generation, but might also elaborate a strain specificity rather than the Gram classification. However, while fungi exhibited a greater resistance than bacteria, spores have clearly the greatest resistance against plasma treatment. For the preparation of appropriate cell concentrations for the ARTP treatment, it is suggested to harvest cells or spores from a culture during the logarithmic phase and wash 2–3 times with sterile solution. Subsequently, the resulting OD600 should be adjusted to 0.6–0.8 or to 106–108 cells × ml−1. It must be emphasized that the optical density can only give a rough indication of the cell concentration and is heavily dependent on strain, cell type, and growth media. A cell count would be only possible in case of non-motile cells. Therefore, it would be instead advisable to use a constant, appropriate, and high optical density under consideration of the subsequent dilution steps with the aim to obtain single colonies on the final agar plate. The suspension liquid itself is only recommended to be sterile while the volume transferred to the sample plate should be in the range of 10–20 µl. In case of extended treatment times or small volumes, an addition of 5% glycerol to the suspension liquid is suggested to minimize sample evaporation. One study investigated the impact of suspension composition on the severity of the plasma treatment. DNA samples were suspended after plasma treatment in water, phosphate-buffered saline (PBS), and media which consisted of carbonate buffer, salts, amino acids, phenol indicator, and vitamins. While water did not protect the sample, a minimal protection through PBS was observed. In contrast, the media protected the DNA sample to a large extent (Leduc et al. 2009). A later study detected a similar degree of DNA damage in PBS and aqueous solution; however, the formation of strand breaks in supercoiled DNA was slower in PBS than in water. In contrast, a tris–EDTA buffer prevented DNA damages greatly (O’Connell et al. 2011). These findings can be attributed to the buffer itself and to additional compounds within the buffer acting as radical scavengers. Furthermore, the effects of certain parameters interacting with each other should not be neglected. Besides the already mentioned energy input which leads to a temperature rise and subsequently to reduced cell viability, especially the energy input and the helium gas flow rate but also the chosen suspension liquid leads to an increased evaporation. This results in a change of the initial conditions like buffer and cell concentration and changes the overall experimental setup. For sample-related variables, only limited conclusions from the available studies can be drawn as most factors are estimated to exhibit weaker effects than the earlier mentioned ARTP system variables. The microorganism and its current state of development were found to have a strong impact. Fungal species tend to be more resilient than bacterial species and dormant bodies such as spores exhibited the highest resistance to ARTP plasma treatment. However, no conclusions about differences between Gram-positive and Gram-negative species or even amongst strains of the same species can be drawn. For most studies, cell concentration was adjusted to the suggested OD600 of 1 and 1.5 (Sun et al. 2015) or even 2 (Lu et al. 2011). As suspension liquid, a physiological saline was mainly employed followed by 50 mM PBS buffer at pH 6 or 7. In a single study 10%, glycerol was used (Wang et al. 2016c). Mostly, the suggestion of applying a volume of 10 or 20 µl suspension liquid was implemented, while very few employed volumes as high as 50 µl (Hua et al. 2010; Lu et al. 2011) and even up to 100 µl (Zhang et al. 2016). High volumes seemed to have been used especially to counteract evaporation processed as they were used mostly together with long treatment times above 1 min and at high gas flow rates. In contrast, some cases reported the pre-drying of the sample on the sample plate prior to plasma treatment (Liu et al. 2013; Li et al. 2014; Wang et al. 2014a, b).

Post-treatment variables

After the ARTP treatment, the sample plates are submerged in resuspension liquid. A resuspension volume of 1 ml and a vortexing time of at least 1 min are recommended to ensure complete resuspension. The resuspension liquid acts as a radical scavenger equally to the suspension liquid during the ARTP treatment. Furthermore, the ratio between the treated volume and the re-suspending media was found to be of importance. Cell samples treated with a dielectric barrier discharge plasma were affected more at lower than at higher dilutions indicating that the concentration of reactive chemical species and the length of the exposure are relevant (Kalghatgi et al. 2011). However, there are no reports on the influence of the vortexing time or intensity on the survival of plasma-treated cells. The subsequent dilution range before spreading the sample on agar is dependent on the plasma treatment severity and the initial cell concentration. In general, a consistent post-treatment procedure and especially homogeneous cell dilutions needs to be ensured to obtain isolated colonies in high reliability. Data describing the post-treatment are limited. Overall, the used resuspension liquids were the same as the suspension liquid used for the plasma treatment. The volume was set between 0.8 and 2 ml, while in one case, even 5 ml was used (Li et al. 2014). This determines the ratio, as discussed earlier, which is possibly important to stop further exposure of the sample to reactive chemical species. More information about post-treatment details such as vortex intensity, dilution range, or spread volume were rarely given.

Combined usage of the ARTP system with other methods

Most studies reported a single ARTP treatment to yield the desired target. However, some studies reported an iterative ARTP treatment. While an iterative treatment for eight times (Jiang et al. 2017) led to a steady increase of the desired phenotype, 30 repetitions were only used to produce a larger pool of possible mutants (Luo et al. 2017b). ARTP treatment was also combined together with other treatments such as chemical mutagenesis with diethyl sulfate (Li et al. 2015), nitrosoguanidine (Zhang et al. 2016) or radiation mutagenesis with UV and UV-NaNO2 (Wang et al. 2017). However, due to the lack of comparative studies, it cannot be concluded if an iterative ARTP treatment or a combination of ARTP with traditional mutagenesis tools is superior over a single ARTP treatment. Apart from applying ARTP in straight-forward mutagenesis approaches, ARTP was also successfully used as a tool for the construction of libraries for genome shuffling (Xu et al. 2012; Zhang et al. 2015b; Gu et al. 2017).

Biotechnological applications

The core component of ARTP, the RF APGD plasma jet generator, was first used with helium as working gas in a proof of concept study for the generation of Streptomyces avermitilis mutants in 2010 (Wang et al. 2010). Since then, a multitude of case studies were published in Chinese and international journals with the majority of more than 80% published after 2014 (Fig. 2).
Fig. 2
Fig. 2

International publications from 2009 to 2018 involving the ARTP split into Gram-positive/Gram-negative bacteria, fungi and other organisms

Microorganisms

Between 2010 and 2018, a total of 42 different microbial species in 73 case studies can be found in international literature (Table 1) which include Gram-negative bacteria (9 species/17 studies), Gram-positive bacteria (15 species/26 studies), filamentous fungi (6 species/8 studies), yeast (8 species/15 studies), species not belonging to the classes mentioned above (3 species/6 studies) and even a whole microbial community. Together with studies published in Chinese language, more than 300 ARTP case studies are estimated to be currently available. Almost all species are classified as Biosafety Level 1 strains, and most are used in biotechnological research and industry like E. coli and B. subtilis.
Table 1

Achievements of ARTP mutagenesis in biotechnology (2010–2018)

Microorganism

Compound/property

Improvement

Final results

Refs

Gram-negative bacteria

 Acetobacter pasteurianus

Acetic acid, ethanol tolerance

Increased ethanol tolerance, 385.7% acetic acid increase

32.83 g l−1 acetic acid titer at 11% ethanol

Wu et al. (2015)

 Corynebacterium glutamicum

l-Arginine

43.79% production increase

Final titer 45.36 g l−1 (24 h), 0.571 g l−1 h−1

Cheng et al. (2016)

 Enterobacter aerogenes

Hydrogen

26.4% increase (yield per mole glucose)

4.901 l hydrogen per g dry cell weight

Lu et al. (2011)

 Enterobacter cloacae

NaCl tolerance

Increased NaCl tolerance and increased TPH degradation

Tolerance to 7.5% NaCl while 3.17% to 7.94% TPH degradation increase

Hua et al. (2010)

Cadmium tolerance

Increased cadmium tolerance

Normal growth at 0.25 g l−1 cadmium

Xu et al. (2017a)

 Escherichia coli

Succinic acid

3.12-fold growth increase, 2.5-fold productivity increase

27.9 g l−1 succinic acid, with a rate of 0.38 g l−1 h−1)

Ma et al. (2016a)

Trans-4-hydroxy-l-proline

Enhanced production from glycerol by a recombinant E. coli BSL21 strain

1.24 g l−1 from 20 g l−1 glycerol (12 h, batch culture)

Wang et al. (2016a)

Anaerobic growth, succinic acid

Anaerobic growth without yeast extract and tryptone

Conversion of 35 g l−1 glucose to 25.2 g l−1 succinic acid

Liu et al. (2013)

l-Lysine

21% increase

136.51 g l−1

Wang et al. (2016c)

l-Lysine

Resistance to rifampicin, s-2-aminoethyl-l-cysteine and l-threonine auxothropic

Strain for study was obtained by ARTP

Xu et al. (2016)

Hemicellulose usage, succinic acid

Simultaneous usage of glucose and xylose under anaerobic conditions

23.1 g l−1, yield 0.85 g g−1 sugar mixture

Bao et al. (2014)

Succinic acid

1.33-fold increase in ATP during xylose fermentation

21.1 g l−1, 76% yield

Jiang et al. (2014)

 Methylosinus trichosporium

Growth rate, methane monooxygenase

> twofold growth rate/methane monooxygenase activity

~ 38 U g−1 dry cell weight

Li et al. (2012)

 Pseudomonas sp.

Esterase

Original strain for study was obtained by ARTP

Dong et al. (2015)

Esterase

4.45-fold increased production

39.84 U ml−1

Dong et al. (2017a)

 Pseudomonas putida

Nicotinic acid

42% increase

189 g l−1

Dong et al. (2017b)

 Sphingomonas sp.

High temperature-tolerant production of Welan gum

High temperature-tolerant production

26.8 g  l−1

Zhu et al. (2014b)

Gram-positive bacteria

 Actinomyces

Acarbose

62.5% increase

2.974 g l−1

Ren et al. (2017)

 Arthrobacter

Dextranase

19 and 30% increase in activity, slight change of pH and temp optima

 

Wang et al. (2014b)

 Bacillus amyloliquefaciens

Menaquinone-7

4.25-fold increase

30.2 mg l−1

Xu and Zhang (2017)

 Bacillus coagulans

l-Lactic acid

Strain for this study was obtained by ARTP

Zheng et al. (2014)

l-Lactic acid

Two mutants with 42.75 and 46.1% increase, respectively

3.84 and 3.93 g l−1

Lv et al. (2016)

Inhibitor tolerance, l-lactic acid

Increase of inhibitor tolerance

Up to 45.39 g l−1 depending on the substrate

Jiang et al. (2016)

 Bacillus subtilis

Amylase, recombinant protein secretion

35% yield increase, 8.8% productivity increase, 37.9% extracellular protein concentration increase

196.35 U ml−1, 1.23 U mg−1 h−1, 0.4 g l−1

Ma et al. (2015)

Amylase

1.34-fold activity increase

1.57 U mg−1 h−1 production rate

Ma et al. (2016b)

Surfactin

5.4-fold increase

0.4736 g l−1

Zhu et al. (2014a)

Surfactin

Strain for this study was obtained by ARTP

Liu et al. (2014)

Uridine

4.4- and 8.7-fold increase in shake flask (30 h shake flask/48 h fed batch)

5.7 and 30.3 g l−1

Fan et al. (2017)

 Clostridium beijerinckii

Electricity production (microbial fuel cell)

2.38-fold increase in voltage, 1.39-fold output power increase

68.98 mW m−2 and 0.19 V

Liu et al. (2015c)

ABE, butanol tolerance

33% higher ABE production, 25% higher butanol production, butanol tolerance

13.71 g l−1 butanol, 4.9 g l−1 acetone, and 0.19 g l−1 ethanol

Kong et al. (2016)

Butanol

32% butanol titer increase

3.1 g l−1 acetone, 10.4 g l−1 butanol, 0.2 g l−1 ethanol in 72 h

Guo et al. (2011)

Ferulic acid tolerance

Ferulic acid tolerance up to 0.9 g l−1

 

Liu et al. (2016)

 Clostridium acetobutylicum

Acetone, butanol, ethanol

31% increased butanol production

11.3 g l−1

Li et al. (2014)

 Mycobacterium neoaurum

4-Androstene-3,17-dione

30% increase, increase from 48.3% to 60.3% molar yield

6.28 g  l−1

Liu et al. (2015b)

 Sporolactobacillus sp.

d-Lactic acid

41.84% increase

1.39 g l−1 h−1

Sun et al. (2015)

 Streptomyces avermitilis

Avermectins

Total avermectin increase by 18%, avermectin B1a increase by 40%

6.7–8.3 g l−1 total and 3.3–3.9 g l−1 avermectin B1a

Wang et al. (2010)

Avermectins

18.9% increase

4.378 g l−1

Cao et al. (2018)

 Streptomyces albulus

ε-Poly-l-lysine

Fourfold increase

1.59 g l−1

Zong et al. (2012)

ε-Poly-l-lysine

Up to 9.5% increase after initial ARTP

Up to 2.52 g l−1

Wang et al. (2016b)

 Streptomyces bingchenggensis

5-Oxomilbemycins A3/A4

2.9-fold increase

3.89 g l−1

Wang et al. (2014a)

 Streptomyces sp.

ε-Poly-l-lysine

66.3% increase

2.91 g l−1

Wang et al. (2015)

 Streptomyces fungicidicus

Enduracidin

1.65-fold increase

1.58 g l−1

Zhang et al. (2015a)

 Streptomyces mobaraensis

Transglutaminase

27% increase

5.85 U ml−1

Jiang et al. (2017)

Filamentous fungi

 Aspergillus niger

Gluconate

12.1, 15.5 and 32.8% production rate increase in 3 mutants

0.067, 0.065 and 0.077 mol l−1 h−1, respectively

Shi et al. (2015)

Glucoamylase

70% higher enzyme yield

2.2 × 103 U ml−1

Zhu et al. (2017)

 Aspergillus terreus

Itaconic acid, inhibitor tolerance

Growth in hydrolysate

19.3 g l−1 with a 36.01% sugar conversion

Li et al. (2016b)

 Blakeslea trispora

Lycopene

55% increase

26.4 mg g−1 dry biomass

Qiang et al. (2014)

 Glarea lozoyensis

Pneumocandin B0

1.39-fold increase

1134 mg l−1

Qin et al. (2016)

 Mortierella alpina

Arachidonic acid

40.61% concentration increase

5.09 g l−1, increase of ARA from 38.99 to 45.61% of total fatty acids

Li et al. (2015)

 Trichoderma viride

Cellulase

1.97-fold activity improvement

4.17 U g−1 dry weight

Xu et al. (2012)

Cellulase

Increase of filter paper activity (2.38-fold), carboxymethyl cellulase (2.61-fold), β-glucosidase (2.18-fold), cellobiohydrolase (2.27-fold)

106.60, 2261.54, 29.22 and 60.90 U mg−1, respectively

Xu et al. (2011)

Yeast

 Auerobasidium pullulans

Polymalic acid

13.8% titer enhancement

128.2 g l−1

Li et al. (2016a)

 Candida glabrata

Pyruvate

32.2% higher production using a cheap nitrogen source

42.3 g l−1

Luo et al. (2017b)

Overproduction of polysaccharides was found

Luo et al. (2017a)

 Cryptococcus spec.

Ionic liquid tolerance

Ionic liquid tolerance (imidazolium-based)

Xu et al. (2017b)

 Pichia anomala

Sugar alcohol

32.3% higher concentration

47.1 g l−1 from 100 g l−1 glucose

Zhang et al. (2015b)

 Rhodosporidium toruloides

Inhibitor tolerance

Exploration of inhibitor tolerance by omics

Qi et al. (2017)

Inhibitor tolerance, lipids

Inhibitors resistance, 14–31% higher lipid content

Accumulation of up to 60% intracellular lipids of dry cell weight

Kitahara et al. (2014)

Inhibitor tolerance

Growth in hydrolysate possible

Qi et al. (2014)

Carotenoids, lipids

 

0.23 g lipid × g−1 and 0.75 mg carotenoid × g−1 (per cell dry weight)

Zhang et al. (2016)

 Rhodotorula mucilaginosa

Carotenoids

67% higher concentration

14.47 mg l−1

Wang et al. (2017)

 Saccharomyces cerevisiae

Methanol reduction

72.54% decreased methanol concentration in wine

30.7 mg l−1 methanol

Liang et al. (2014)

Glutathione

56.76% production increase

 

Xu et al. (2017c)

 Yarrowia lipolytica

α-ketoglutaric acid

Strains for omics study were obtained by ARTP

Zeng et al. (2016)

α-ketoglutaric acid

51.8% titer increase

11.83 g l−1

Zeng et al. (2015)

Erythritol

34% increase

64.8 g l−1 from 100 g l−1 glycerol, yield 0.65 g g−1, productivity 1.05 g l−1 h−1

Liu et al. (2017b)

Others

 Chlorella pyrenoidosa (Plant)

Biomass

32.08% growth increase, 22.07% dry weight increase, 16.85% lipid productivity increase

OD680 = 1.62; 0.52 g l−1 dry weight

Cao et al. (2017)

 Crypthecodinium cohnii (Dinoflagellate)

Extracellular polysaccharides

33.85% volumetric yield increase, 85.35% EPS yield on biomass increase, 57.17% EPS yield on glucose increase

1.02 g l−1 EPS volumetric yield, 0.39 g g−1 EPS yield on biomass, 94 mg g−1 EPS yield on glucose

Liu et al. (2015a)

Growth rate, lipid content

24.32% higher growth rate, 7.05% higher lipid content

 

Liu et al. (2017a)

 Spirulina platensis (Cyanobacterium)

Biomass

Enhancement in growth rate, carbohydrate content, chlorophyll content and CO2 fixation in 3 mutants

Growth rate (0.118 g l−1 day−1 in 3-A10), carbohydrate content (30.7% in 3-B2), chlorophyll content (3.82 mg g−1) and CO2 fixation (0.120 g CO2 g−1 day−1 in 3-B2)

Tan et al. (2015)

Growth, carbohydrate content

78% carbohydrate content increase

0.331 g−1 g−1

Fang et al. (2013)

Astaxanthin

196% increase

45.88 µg g−1

An et al. (2017)

 Microbial community

Butanol

34% titer increase

15.63 g l−1

Gu et al. (2017)

Mutagenesis targets

Overall, mutagenesis targets can be classified into six groups, namely, (i) increase of microbial tolerance to certain growth conditions and media compounds, (ii) growth increase and optimization of biomass-related parameters, (iii) enzyme activity increase, (iv) butanol production increase, (v) production increase of organic acids and their derivates, and (vi) production increase of specialty chemicals mainly used in pharmaceutical products. As there are numerous positive achievements reported, only selected outstanding examples can be outlined in detail. In a study comprising three publications involving the yeast Rhodosporidium toruloides, three mutants were isolated which were resistant to the growth inhibitors vanillin, furfural, and acetic acid and, therefore, could grow in sugar cane bagasse hydrolysate (Kitahara et al. 2014). Subsequently, the mutant with the highest tolerance towards inhibitors was identified (Qi et al. 2014) and further investigated using a mixed transcriptome/proteome approach. Thirty-nine genes were identified with a larger than fivefold increased transcription level belonging to the cluster of nucleotide excision repair, glycolysis, spliceosome assembly, and MAPK signalling (Qi et al. 2017). In another study, a B. subtilis mutant showed a 37.9% increase in extracellular protein concentration which resulted in an overall higher recombinant protein secretion (Ma et al. 2015). The increase in butanol production by ARTP was shown several times such as in a mutant which exhibited a 33% higher ABE solvents production and a 25% higher butanol production (12.53 g l−1 total ABE solvents, 4.9 g l−1 acetone, 13.71 g l−1 butanol, and 0.19 g l−1 ethanol) when compared to its wild type (Kong et al. 2016). The enzymes of the cellulase complex in Trichoderma viridae were investigated individually after ARTP treatment. A 2.38-fold increase of filter paper activity, 2.61-fold increase of carboxymethyl cellulase activity, 2.18-fold increase in β-glucosidase activity (EC 3.1.2.21), and a 2.27-fold increase in cellobiohydrolase (EC 3.2.1.91) activity was reported (Xu et al. 2011). The organic acid l-lactic acid produced by an ARTP mutant of Bacillus coagulans reached a titer of 90.2 g l−1 from 100 g l−1 xylose, while 23.49 g  l−1 from corn stover with a yield of 83.09% was achieved (Zheng et al. 2014). The carotenoid lycopene, a specialty chemical used as a pigment and antioxidant, showed a 55% concentration increase to 19.3 g l−1 in Blakeslea trispora mutants (Qiang et al. 2014).

Concluding remarks

ARTP has been proven to be a reliable and effective microbial breeding system leading to high frequency of random mutations induced by reactive chemical species which are produced by the helium-based atmospheric and room-temperature plasma. Its application has been reported to be successful in various studies involving diverse bacterial and fungal species for improving strain properties such as tolerance to medium components and growth conditions and increasing production of valuable products like cellular biomass, enzymes, bulk, and specialty chemicals. However, there are still theoretical and technical questions open for clarification, whose absence might delay the widespread use of the ARTP mutagenesis system including:
  1. 1.

    The factors involved in the operation of the system, their interactions, and the severity of their impact on the resulting mutagenic effects. Developing an automatic and quantifiable parameter setup for effective plasma treatment would be an essential prerequisite for wider applications of the ARTP mutagenesis breeding system.

     
  2. 2.

    The systematic clarification of the susceptibility of different microorganisms and their growth stages to the ARTP treatment are required for the development of Standard Operation Protocols. Unfortunately, many case studies did not indicate precisely the status of all operational parameters making it difficult for a susceptibility estimation of different microorganisms to the sub-lethal plasma treatment.

     
  3. 3.

    More omics studies are needed to gain a deeper scientific insight of the mutagenic impact of ARTP to widen the applications of ARTP-induced gene mutations not only in cellular breeding but also in other fields such as directed evolution of enzymes. The combined use of ARTP with other mutation methods such as γ-ray or with rational mutations such as CRISPR/Cas9 might give additional advantages in improving microbes, which is worth investigating.

     

Abbreviations

ARA: 

arachidonic acid

ARTP: 

atmospheric and room-temperature plasma

ABE: 

acetone–butanol–ethanol

CRISPR/Cas9: 

clustered regularly interspaced short palindromic repeats/Cas9

DNA: 

deoxyribonucleic acid

EDTA: 

ethylenediaminetetraacetic acid

EPS: 

extracellular polysaccharides

GMO: 

genetically modified organism

MAPK pathway: 

mitogen-activated protein kinase pathway

OD: 

optical density

PBS: 

phosphate-buffered saline

RF APGD plasma: 

radio-frequency atmospheric-pressure glow discharge plasma

SLPM: 

standard liters per minute

TPH: 

total petroleum hydrocarbon

UV: 

ultraviolet

Declarations

Authors’ contributions

CO collected the data and prepared the draft manuscript. MN and JCW revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by the Science and Engineering Research Council (SERC) of the Agency for Science, Technology and Research (A*STAR), Singapore, under the Biomass to Speciality Chemicals Program (SERC Grant No. 1526004159, ICES/15-175A02) and through the A*STAR Research Attachment Program (ARAP) Scholarship.

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Funding

There is no funding source.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Institute of Chemical and Engineering Sciences, Agency for Sciences, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Singapore
(2)
Microbiology and Bioprocess Engineering, Institute of Biochemistry, Leipzig University, 604103 Leipzig, Germany

References

  1. An J, Gao F, Ma Q, Xiang Y, Ren D, Lu J (2017) Screening for enhanced astaxanthin accumulation among Spirulina platensis mutants generated by atmospheric and room temperature plasmas. Algal Res 25:464–472. https://doi.org/10.1016/j.algal.2017.06.006 View ArticleGoogle Scholar
  2. Arjunan K, Sharma V, Ptasinska S (2015) Effects of atmospheric pressure plasmas on isolated and cellular DNA—a review. Int J Mol Sci 16:2971–3016. https://doi.org/10.3390/ijms16022971 View ArticleGoogle Scholar
  3. Bao H, Liu R, Liang L, Jiang Y, Jiang M, Ma J, Chen K, Jia H, Wei P, Ouyang P (2014) Succinic acid production from hemicellulose hydrolysate by an Escherichia coli mutant obtained by atmospheric and room temperature plasma and adaptive evolution. Enzyme Microb Technol 66:10–15. https://doi.org/10.1016/j.enzmictec.2014.04.017 View ArticleGoogle Scholar
  4. Barrangou R, Horvath P (2017) A decade of discovery: CRISPR functions and applications. Nat Microbiol 2:17092. https://doi.org/10.1038/nmicrobiol.2017.92 View ArticleGoogle Scholar
  5. Bogaerts A, Neyts E, Gijbels R, van der Mullen J (2002) Gas discharge plasmas and their applications. Spectrochim Acta Part B At Spectrosc 57:609–658. https://doi.org/10.1016/S0584-8547(01)00406-2 View ArticleGoogle Scholar
  6. Bridges BA (2001) SOS repair. In: Brenner S and Miller JH (eds) Encyclopedia of genetics. Elsevier Science, pp 1853–1855Google Scholar
  7. Cao S, Zhou X, Jin W, Wang F, Tu R, Han S, Chen H, Chen C, Xie GJ, Ma F (2017) Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP). Bioresour Technol 244:1400–1406. https://doi.org/10.1016/j.biortech.2017.05.039 View ArticleGoogle Scholar
  8. Cao X, Luo Z, Zeng W, Xu S, Zhao L, Zhou J (2018) Enhanced avermectin production by Streptomyces avermitilis ATCC 31267 using high-throughput screening aided by fluorescence-activated cell sorting. Appl Microbiol Biotechnol 102:703–712. https://doi.org/10.1007/s00253-017-8658-x View ArticleGoogle Scholar
  9. Cheng G, Xu J, Xia X, Guo Y, Xu K, Su C, Zhang W (2016) Breeding l-arginine-producing strains by a novel mutagenesis method: atmospheric and room temperature plasma (ARTP). Prep Biochem Biotechnol 46:509–516. https://doi.org/10.1080/10826068.2015.1084634 View ArticleGoogle Scholar
  10. Dong J, Zhao W, Gasmalla MAA, Sun J, Hua X, Zhang W, Han L, Fan Y, Feng Y, Shen Q, Yang R (2015) A novel extracellular cold-active esterase of Pseudomonas sp. TB11 from glacier No. 1: differential induction, purification and characterisation. J Mol Catal B Enzym 121:53–63. https://doi.org/10.1016/j.molcatb.2015.07.015 View ArticleGoogle Scholar
  11. Dong J, Gasmalla MAA, Zhao W, Sun J, Liu W, Wang M, Han L, Yang R (2017a) Characterization of a cold-adapted esterase and mutants from a psychotolerant Pseudomonas sp. strain. Biotechnol Appl Biochem 64:686–699. https://doi.org/10.1002/bab.1525 View ArticleGoogle Scholar
  12. Dong T-T, Gong J-S, Gu B-C, Zhang Q, Li H, Lu Z-M, Lu M-L, Shi J-S, Xu Z-H (2017b) Significantly enhanced substrate tolerance of Pseudomonas putida nitrilase via atmospheric and room temperature plasma and cell immobilization. Bioresour Technol 244:1104–1110. https://doi.org/10.1016/j.biortech.2017.08.039 View ArticleGoogle Scholar
  13. Ermolaeva SA, Varfolomeev AF, Chernukha MY, Yurov DS, Vasiliev MM, Kaminskaya AA, Moisenovich MM, Romanova JM, Murashev AN, Selezneva II, Shimizu T, Sysolyatina EV, Shaginyan IA, Petrov OF, Mayevsky EI, Fortov VE, Morfill GE, Naroditsky BS, Gintsburg AL (2011) Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol 60:75–83. https://doi.org/10.1099/jmm.0.020263-0 View ArticleGoogle Scholar
  14. Fan X, Wu H, Li G, Yuan H, Zhang H, Li Y, Xie X, Chen N (2017) Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening. PLoS ONE 12:e0176545. https://doi.org/10.1371/journal.pone.0176545 View ArticleGoogle Scholar
  15. Fang M, Jin L, Zhang C, Tan Y, Jiang P, Ge N, Li Heping, Xing X (2013) Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes. PLoS ONE 8:e77046. https://doi.org/10.1371/journal.pone.0077046 View ArticleGoogle Scholar
  16. Gu C, Wang G, Mai S, Wu P, Wu J, Wang G, Liu H, Zhang J (2017) ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production. Appl Microbiol Biotechnol 101:2189–2199. https://doi.org/10.1007/s00253-017-8093-z View ArticleGoogle Scholar
  17. Guo T, Tang Y, Xi YL, He AY, Sun BJ, Wu H, Liang DF, Jiang M, Ouyang PK (2011) Clostridium beijerinckii mutant obtained by atmospheric pressure glow discharge producing high proportions of butanol and solvent yields. Biotechnol Lett 33:2379–2383. https://doi.org/10.1007/s10529-011-0702-9 View ArticleGoogle Scholar
  18. Hua X, Wang J, Wu Z, Zhang H, Li H, Xing X, Liu Z (2010) A salt tolerant Enterobacter cloacae mutant for bioaugmentation of petroleum- and salt-contaminated soil. Biochem Eng J 49:201–206. https://doi.org/10.1016/j.bej.2009.12.014 View ArticleGoogle Scholar
  19. Jiang M, Wan Q, Liu R, Liang L, Chen X, Wu M, Zhang H, Chen K, Ma J, Wei P, Ouyang P (2014) Succinic acid production from corn stalk hydrolysate in an E. coli mutant generated by atmospheric and room-temperature plasmas and metabolic evolution strategies. J Ind Microbiol Biotechnol 41:115–123. https://doi.org/10.1007/s10295-013-1346-7 View ArticleGoogle Scholar
  20. Jiang T, Qiao H, Zheng Z, Chu Q, Li X, Yong Q, Ouyang J (2016) Lactic acid production from pretreated hydrolysates of corn stover by a newly developed Bacillus coagulans strain. PLoS ONE 11:e0149101. https://doi.org/10.1371/journal.pone.0149101 View ArticleGoogle Scholar
  21. Jiang Y, Shang Y-P, Li H, Zhang C, Pan J, Bai Y-P, Li C-X, Xu J-H (2017) Enhancing transglutaminase production of Streptomyces mobaraensis by iterative mutagenesis breeding with atmospheric and room-temperature plasma (ARTP). Bioresour Bioprocess 4:37. https://doi.org/10.1186/s40643-017-0168-2 View ArticleGoogle Scholar
  22. Kalghatgi S, Kelly CM, Cerchar E, Torabi B, Alekseev O, Fridman A, Friedman G, Azizkhan-Clifford J (2011) Effects of non-thermal plasma on mammalian cells. PLoS ONE 6:e16270. https://doi.org/10.1371/journal.pone.0016270 View ArticleGoogle Scholar
  23. Kim OC, Kim SY, Hwang DH, Oh DB, Kang HA, Kwon O (2013) Development of a genome-wide random mutagenesis system using proofreading-deficient DNA polymerase δ in the methylotrophic yeast Hansenula polymorpha. J Microbiol Biotechnol 23:304–312. https://doi.org/10.4014/jmb.1211.11048 View ArticleGoogle Scholar
  24. Kitahara Y, Yin T, Zhao X, Wachi M, Du W, Liu D (2014) Isolation of oleaginous yeast (Rhodosporidium toruloides) mutants tolerant of sugarcane bagasse hydrolysate. Biosci Biotechnol Biochem 78:336–342. https://doi.org/10.1080/09168451.2014.882746 View ArticleGoogle Scholar
  25. Kong X, He A, Zhao J, Wu H, Ma J, Wei C, Jin W, Jiang M (2016) Efficient acetone–butanol–ethanol (ABE) production by a butanol-tolerant mutant of Clostridium beijerinckii in a fermentation–pervaporation coupled process. Biochem Eng J 105:90–96. https://doi.org/10.1016/j.bej.2015.09.013 View ArticleGoogle Scholar
  26. Kramer A, Bekeschus S, Matthes R, Bender C, Stope MB, Napp M, Lademann O, Lademann J, Weltmann KD, Schauer F (2015) Cold physical plasmas in the field of hygiene—relevance, significance, and future applications. Plasma Process Polym 12:1410–1422. https://doi.org/10.1002/ppap.201500170 View ArticleGoogle Scholar
  27. Lackmann JW, Bandow JE (2014) Inactivation of microbes and macromolecules by atmospheric-pressure plasma jets. Appl Microbiol Biotechnol 98:6205–6213. https://doi.org/10.1007/s00253-014-5781-9 View ArticleGoogle Scholar
  28. Lackmann J-W, Schneider S, Edengeiser E, Jarzina F, Brinckmann S, Steinborn E, Havenith M, Benedikt J, Bandow JE (2013) Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. J R Soc Interface 10:20130591. https://doi.org/10.1098/rsif.2013.0591 View ArticleGoogle Scholar
  29. Leduc M, Guay D, Leask RL, Coulombe S (2009) Cell permeabilization using a non-thermal plasma. New J Phys 11:115021. https://doi.org/10.1088/1367-2630/11/11/115021 View ArticleGoogle Scholar
  30. Lee K, Paek K-H, Ju W-T, Lee Y (2006) Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. J Microbiol Microbiol Soc Korea 44:269–275Google Scholar
  31. Li G, Li H-P, Wang L-Y, Wang S, Zhao H-X, Sun W-T, Xing X-H, Bao C-Y (2008) Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Appl Phys Lett 92:221504. https://doi.org/10.1063/1.2938692 View ArticleGoogle Scholar
  32. Li HP, Wang ZB, Ge N, Le PS, Wu H, Lu Y, Wang LY, Zhang C, Bao CY, Xing XH (2012) Studies on the physical characteristics of the radio-frequency atmospheric-pressure glow discharge plasmas for the genome mutation of Methylosinus trichosporium. IEEE Trans Plasma Sci 40:2853–2860. https://doi.org/10.1109/TPS.2012.2213274 View ArticleGoogle Scholar
  33. Li H, Luo W, Wang Q, Yu X (2014) Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma. Appl Biochem Biotechnol 172:3330–3341. https://doi.org/10.1007/s12010-014-0765-x View ArticleGoogle Scholar
  34. Li X, Liu R, Li J, Chang M, Liu Y, Jin Q, Wang X (2015) Enhanced arachidonic acid production from Mortierella alpina combining atmospheric and room temperature plasma (ARTP) and diethyl sulfate treatments. Bioresour Technol 177:134–140. https://doi.org/10.1016/j.biortech.2014.11.051 View ArticleGoogle Scholar
  35. Li H, Li T, Zuo H, Xiao S, Guo M, Jiang M, Li Z, Li Y, Zou X (2016a) A novel rhodamine-based fluorescent pH probe for high-throughput screening of high-yield polymalic acid strains from random mutant libraries. RSC Adv 6:94756–94762. https://doi.org/10.1039/c6ra20394a View ArticleGoogle Scholar
  36. Li X, Zheng K, Lai C, Ouyang J, Yong Q (2016b) Improved itaconic acid production from undetoxified enzymatic hydrolysate of steam-exploded corn stover using an Aspergillus terreus mutant generated by atmospheric and room temperature plasma. BioResources 11:9047–9058. https://doi.org/10.15376/biores.11.4.9047-9058 Google Scholar
  37. Liang MH, Liang YJ, Chai JY, Zhou SS, Jiang JG (2014) Reduction of methanol in brewed wine by the use of atmospheric and room-temperature plasma method and the combination optimization of malt with different adjuncts. J Food Sci 79:M2308–M2314. https://doi.org/10.1111/1750-3841.12660 View ArticleGoogle Scholar
  38. Liu R, Liang L, Ma J, Ren X, Jiang M, Chen K, Wei P, Ouyang P (2013) An engineering Escherichia coli mutant with high succinic acid production in the defined medium obtained by the atmospheric and room temperature plasma. Process Biochem 48:1603–1609. https://doi.org/10.1016/j.procbio.2013.07.020 View ArticleGoogle Scholar
  39. Liu Q, Lin J, Wang W, Huang H, Li S (2014) Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochem Eng J 93:31–37. https://doi.org/10.1016/j.bej.2014.08.023 View ArticleGoogle Scholar
  40. Liu B, Sun Z, Ma X, Yang B, Jiang Y, Wei D, Chen F (2015a) Mutation breeding of extracellular polysaccharide-producing microalga Crypthecodinium cohnii by a novel mutagenesis with atmospheric and room temperature plasma. Int J Mol Sci 16:8201–8212. https://doi.org/10.3390/ijms16048201 View ArticleGoogle Scholar
  41. Liu C, Zhang X, Rao Z, Shao M, Zhang L, Wu D, Xu Z, Li H (2015b) Mutation breeding of high 4-androstene-3,17-dione-producing Mycobacterium neoaurum ZADF-4 by atmospheric and room temperature plasma treatment. J Zhejiang Univ Sci B 16:286–295. https://doi.org/10.1631/jzus.B1400274 View ArticleGoogle Scholar
  42. Liu J, Guo T, Wang D, Ying H (2015c) Clostridium beijerinckii mutant obtained atmospheric pressure glow discharge generates enhanced electricity in a microbial fuel cell. Biotechnol Lett 37:95–100. https://doi.org/10.1007/s10529-014-1649-4 View ArticleGoogle Scholar
  43. Liu J, Guo T, Wang D, Xu J, Ying H (2016) Butanol production by a Clostridium beijerinckii mutant with high ferulic acid tolerance. Biotechnol Appl Biochem 63:727–733. https://doi.org/10.1002/bab.1418 View ArticleGoogle Scholar
  44. Liu J, Pei G, Diao J, Chen Z, Liu L, Chen L, Zhang W (2017a) Screening and transcriptomic analysis of Crypthecodinium cohnii mutants with high growth and lipid content using the acetyl-CoA carboxylase inhibitor sethoxydim. Appl Microbiol Biotechnol 101:6179–6191. https://doi.org/10.1007/s00253-017-8397-z View ArticleGoogle Scholar
  45. Liu X, Lv J, Xu J, Xia J, Dai B, Xu X, Xu J (2017b) Erythritol production by Yarrowia lipolytica mutant strain M53 generated through atmospheric and room temperature plasma mutagenesis. Food Sci Biotechnol 26:979–986. https://doi.org/10.1007/s10068-017-0116-0 View ArticleGoogle Scholar
  46. Lu Y, Wang L, Ma K, Li G, Zhang C, Zhao H, Lai Q, Li HP, Xing XH (2011) Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP). Biochem Eng J 55:17–22. https://doi.org/10.1016/j.bej.2011.02.020 View ArticleGoogle Scholar
  47. Lu H, Patil S, Keener KM, Cullen PJ, Bourke P (2014) Bacterial inactivation by high-voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA. J Appl Microbiol 116:784–794. https://doi.org/10.1111/jam.12426 View ArticleGoogle Scholar
  48. Luo Z, Liu S, Du G, Zhou J, Chen J (2017a) Identification of a polysaccharide produced by the pyruvate overproducer Candida glabrata CCTCC M202019. Appl Microbiol Biotechnol 101:4447–4458. https://doi.org/10.1007/s00253-017-8245-1 View ArticleGoogle Scholar
  49. Luo Z, Zeng W, Du G, Liu S, Fang F, Zhou J, Chen J (2017b) A high-throughput screening procedure for enhancing pyruvate production in Candida glabrata by random mutagenesis. Bioprocess Biosyst Eng 40:693–701. https://doi.org/10.1007/s00449-017-1734-x View ArticleGoogle Scholar
  50. Lv X, Song J, Yu B, Liu H, Li C, Zhuang Y, Wang Y (2016) High-throughput system for screening of high l-lactic acid-productivity strains in deep-well microtiter plates. Bioprocess Biosyst Eng 39:1737–1747. https://doi.org/10.1007/s00449-016-1649-y View ArticleGoogle Scholar
  51. Ma Y, Yang H, Chen X, Sun B, Du G, Zhou Z, Song J, Fan Y, Shen W (2015) Significantly improving the yield of recombinant proteins in Bacillus subtilis by a novel powerful mutagenesis tool (ARTP): alkaline α-amylase as a case study. Protein Expr Purif 114:82–88. https://doi.org/10.1016/j.pep.2015.06.016 View ArticleGoogle Scholar
  52. Ma J, Wu M, Zhang C, He A, Kong X, Li G, Wei C, Jiang M (2016a) Coupled ARTP and ALE strategy to improve anaerobic cell growth and succinic acid production by Escherichia coli. J Chem Technol Biotechnol 91:711–717. https://doi.org/10.1002/jctb.4633 View ArticleGoogle Scholar
  53. Ma Y, Shen W, Chen X, Liu L, Zhou Z, Xu F, Yang H (2016b) Significantly enhancing recombinant alkaline amylase production in Bacillus subtilis by integration of a novel mutagenesis-screening strategy with systems-level fermentation optimization. J Biol Eng 10:13. https://doi.org/10.1186/s13036-016-0035-2 View ArticleGoogle Scholar
  54. Misra NN, Pankaj SK, Segat A, Ishikawa K (2016) Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci Technol 55:39–47. https://doi.org/10.1016/j.tifs.2016.07.001 View ArticleGoogle Scholar
  55. O’Connell D, Cox LJ, Hyland WB, McMahon SJ, Reuter S, Graham WG, Gans T, Currell FJ (2011) Cold atmospheric pressure plasma jet interactions with plasmid DNA. Appl Phys Lett 98:43701. https://doi.org/10.1063/1.3521502 View ArticleGoogle Scholar
  56. Pompl R, Jamitzky F, Shimizu T, Steffes B, Bunk W, Schmidt H-U, Georgi M, Ramrath K, Stolz W, Stark RW, Urayama T, Fujii S, Morfill GE (2009) The effect of low-temperature plasma on bacteria as observed by repeated AFM imaging. New J Phys 11:115023. https://doi.org/10.1088/1367-2630/11/11/115023 View ArticleGoogle Scholar
  57. Qi F, Kitahara Y, Wang Z, Zhao X, Du W, Liu D (2014) Novel mutant strains of Rhodosporidium toruloides by plasma mutagenesis approach and their tolerance for inhibitors in lignocellulosic hydrolyzate. J Chem Technol Biotechnol 89:735–742. https://doi.org/10.1002/jctb.4180 View ArticleGoogle Scholar
  58. Qi F, Zhao X, Kitahara Y, Li T, Ou X, Du W, Liu D, Huang J (2017) Integrative transcriptomic and proteomic analysis of the mutant lignocellulosic hydrolyzate-tolerant Rhodosporidium toruloides. Eng Life Sci 17:249–261. https://doi.org/10.1002/elsc.201500143 View ArticleGoogle Scholar
  59. Qiang W, Ling-ran F, Luo W, Han-guang L, Lin W, Ya Z, Xiao-bin Y (2014) Mutation breeding of lycopene-producing strain Blakeslea trispora by a novel atmospheric and room temperature plasma (ARTP). Appl Biochem Biotechnol 174:452–460. https://doi.org/10.1007/s12010-014-0998-8 View ArticleGoogle Scholar
  60. Qin T, Song P, Wang X, Ji X, Ren L, Huang H (2016) Protoplast mutant selection of Glarea lozoyensis and statistical optimization of medium for pneumocandin B0 yield-up. Biosci Biotechnol Biochem 80:2241–2246. https://doi.org/10.1080/09168451.2016.1196575 View ArticleGoogle Scholar
  61. Ren F, Chen L, Tong Q (2017) Highly improved acarbose production of Actinomyces through the combination of ARTP and penicillin susceptible mutant screening. World J Microbiol Biotechnol 33:16. https://doi.org/10.1007/s11274-016-2156-7 View ArticleGoogle Scholar
  62. Shi F, Tan J, Chu J, Wang Y, Zhuang Y, Zhang S (2015) A qualitative and quantitative high-throughput assay for screening of gluconate high-yield strains by Aspergillus niger. J Microbiol Methods 109:134–139. https://doi.org/10.1016/j.mimet.2014.12.004 View ArticleGoogle Scholar
  63. Sun J, Wang Y, Wu B, Bai Z, He B (2015) Enhanced production of d -lactic acid by Sporolactobacillus sp. Y2-8 mutant generated by atmospheric and room temperature plasma. Biotechnol Appl Biochem 62:287–292. https://doi.org/10.1002/bab.1267 View ArticleGoogle Scholar
  64. Tan Y, Fang M, Jin L, Zhang C, Li H-P, Xing X-H (2015) Culture characteristics of the atmospheric and room temperature plasma-mutated Spirulina platensis mutants in CO2 aeration culture system for biomass production. J Biosci Bioeng 120:438–443. https://doi.org/10.1016/j.jbiosc.2015.02.012 View ArticleGoogle Scholar
  65. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta Part B At Spectrosc 61:2–30. https://doi.org/10.1016/j.sab.2005.10.003 View ArticleGoogle Scholar
  66. Twardowski T, Małyska A (2015) Uninformed and disinformed society and the GMO market. Trends Biotechnol 33:1–3. https://doi.org/10.1016/j.tibtech.2014.11.006 View ArticleGoogle Scholar
  67. Wang L-Y, Huang Z-L, Li G, Zhao H-X, Xing X-H, Sun W-T, Li H-P, Gou Z-X, Bao C-Y (2010) Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. J Appl Microbiol 108:851–858. https://doi.org/10.1111/j.1365-2672.2009.04483.x View ArticleGoogle Scholar
  68. Wang ZB, Le PS, Ge N, Nie QY, Li HP, Bao CY (2012) One-dimensional modeling on the asymmetric features of a radio-frequency atmospheric helium glow discharge produced using a Co-Axial-type plasma generator. Plasma Chem Plasma Process 32:859–874. https://doi.org/10.1007/s11090-012-9367-y View ArticleGoogle Scholar
  69. Wang H-Y, Zhang J, Zhang Y-J, Zhang B, Liu C-X, He H-R, Wang X-J, Xiang W-S (2014a) Combined application of plasma mutagenesis and gene engineering leads to 5-oxomilbemycins A3/A4 as main components from Streptomyces bingchenggensis. Appl Microbiol Biotechnol 98:9703–9712. https://doi.org/10.1007/s00253-014-5970-6 View ArticleGoogle Scholar
  70. Wang X, Lu M, Wang S, Fang Y, Wang D, Ren W, Zhao G (2014b) The atmospheric and room-temperature plasma (ARTP) method on the dextranase activity and structure. Int J Biol Macromol 70:284–291. https://doi.org/10.1016/j.ijbiomac.2014.07.006 View ArticleGoogle Scholar
  71. Wang L, Chen X, Wu G, Li S, Zeng X, Ren X, Tang L, Mao Z (2015) Improved ε-poly-l-lysine production of Streptomyces sp. FEEL-1 by atmospheric and room temperature plasma mutagenesis and streptomycin resistance screening. Ann Microbiol 65:2009–2017. https://doi.org/10.1007/s13213-015-1039-8 View ArticleGoogle Scholar
  72. Wang J, Zhang Z, Liu H, Sun FF, Yue C, Hu J, Wang C (2016a) Construction and optimization of trans-4-hydroxy-l-proline production recombinant E. coli strain taking the glycerol as carbon source. J Chem Technol Biotechnol 91:2389–2398. https://doi.org/10.1002/jctb.5024 View ArticleGoogle Scholar
  73. Wang L, Chen X, Wu G, Zeng X, Ren X, Li S, Tang L, Mao Z (2016b) Genome shuffling and gentamicin-resistance to improve ε-poly-l-lysine productivity of Streptomyces albulus W-156. Appl Biochem Biotechnol 180:1601–1617. https://doi.org/10.1007/s12010-016-2190-9 View ArticleGoogle Scholar
  74. Wang Y, Li Q, Zheng P, Guo Y, Wang L, Zhang T, Sun J, Ma T (2016c) Evolving the l-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method. J Ind Microbiol Biotechnol 43:1227–1235. https://doi.org/10.1007/s10295-016-1803-1 View ArticleGoogle Scholar
  75. Wang Q, Liu D, Yang Q, Wang P (2017) Enhancing carotenoid production in Rhodotorula mucilaginosa KC8 by combining mutation and metabolic engineering. Ann Microbiol 67:425–431. https://doi.org/10.1007/s13213-017-1274-2 View ArticleGoogle Scholar
  76. Winter T, Bernhardt J, Winter J, Mäder U, Schlüter R, Weltmann KD, Hecker M, Kusch H (2013) Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma. Proteomics 13:2608–2621. https://doi.org/10.1002/pmic.201200343 View ArticleGoogle Scholar
  77. Wu X, Wei Y, Xu Z, Liu L, Tan Z, Jia S (2015) Evaluation of an ethanol-tolerant Acetobacter pasteurianus mutant generated by a new atmospheric and room temperature plasma (ARTP). Lect Notes Electr Eng 333:277–286. https://doi.org/10.1007/978-3-662-46318-5_30 View ArticleGoogle Scholar
  78. Xu J, Zhang W (2017) Menaquinone-7 production from maize meal hydrolysate by Bacillus isolates with diphenylamine and analogue resistance. J Zhejiang Univ Sci B 18:462–473. https://doi.org/10.1631/jzus.B1600127 View ArticleGoogle Scholar
  79. Xu F, Wang J, Chen S, Qin W, Yu Z, Zhao H, Xing X, Li H (2011) Strain improvement for enhanced production of cellulase in Trichoderma viride. Appl Biochem Microbiol 47:53–58. https://doi.org/10.1134/S0003683811010212 View ArticleGoogle Scholar
  80. Xu F, Jin H, Li H, Tao L, Wang J, Lv J, Chen S (2012) Genome shuffling of Trichoderma viride for enhanced cellulase production. Ann Microbiol 62:509–515. https://doi.org/10.1007/s13213-011-0284-8 View ArticleGoogle Scholar
  81. Xu J, Han M, Ren X, Zhang W (2016) Modification of aspartokinase III and dihydrodipicolinate synthetase increases the production of l-lysine in Escherichia coli. Biochem Eng J 114:79–86. https://doi.org/10.1016/j.bej.2016.06.025 View ArticleGoogle Scholar
  82. Xu C, He S, Liu Y, Zhang W, Lu D (2017a) Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU. Chemosphere 173:622–629. https://doi.org/10.1016/j.chemosphere.2017.01.005 View ArticleGoogle Scholar
  83. Xu J, Zhou S, Zhao Y, Xia J, Liu X, Xu JM, He B, Wu B, Zhang J (2017b) Asymmetric whole-cell bioreduction of sterically bulky 2-benzoylpyridine derivatives in aqueous hydrophilic ionic liquid media. Chem Eng J 316:919–927. https://doi.org/10.1016/j.cej.2017.02.028 View ArticleGoogle Scholar
  84. Xu W, Jia H, Zhang L, Wang H, Tang H, Zhang L (2017c) Effects of GSH1 and GSH2 gene mutation on glutathione synthetases activity of Saccharomyces cerevisiae. Protein J 36:270–277. https://doi.org/10.1007/s10930-017-9731-0 View ArticleGoogle Scholar
  85. Yolmeh M, Khomeiri M (2017) Effect of mutagenesis treatment on antimicrobial and antioxidant activities of pigments extracted from Rhodotorula glutinis. Biocatal Agric Biotechnol 10:285–290. https://doi.org/10.1016/j.bcab.2017.04.007 Google Scholar
  86. Zeng W, Du G, Chen J, Li J, Zhou J (2015) A high-throughput screening procedure for enhancing alpha-ketoglutaric acid production in Yarrowia lipolytica by random mutagenesis. Process Biochem 50:1516–1522. https://doi.org/10.1016/j.procbio.2015.06.011 View ArticleGoogle Scholar
  87. Zeng W, Fang F, Liu S, Du G, Chen J, Zhou J (2016) Comparative genomics analysis of a series of Yarrowia lipolytica WSH-Z06 mutants with varied capacity for α-ketoglutarate production. J Biotechnol 239:76–82. https://doi.org/10.1016/j.jbiotec.2016.10.008 View ArticleGoogle Scholar
  88. Zhang X, Zhang XF, Li HP, Wang LY, Zhang C, Xing XH, Bao CY (2014) Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biotechnol 98:5387–5396. https://doi.org/10.1007/s00253-014-5755-y View ArticleGoogle Scholar
  89. Zhang D, Wang Q, Liang X (2015a) Breeding high producers of enduracidin from Streptomyces fungicidicus by combination of various mutation treatments. Lect Notes Electr Eng 332:133–142. https://doi.org/10.1007/978-3-662-45657-6_14 View ArticleGoogle Scholar
  90. Zhang G, Lin Y, Qi X, Wang L, He P, Wang Q, Ma Y (2015b) Genome shuffling of the nonconventional yeast Pichia anomala for improved sugar alcohol production. Microb Cell Fact 14:112. https://doi.org/10.1186/s12934-015-0303-8 View ArticleGoogle Scholar
  91. Zhang X, Zhang C, Zhou QQ, Zhang XF, Wang LY, Chang HB, Li HP, Oda Y, Xing XH (2015c) Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis. Appl Microbiol Biotechnol 99:5639–5646. https://doi.org/10.1007/s00253-015-6678-y View ArticleGoogle Scholar
  92. Zhang C, Shen H, Zhang X, Yu X, Wang H, Xiao S, Wang J, Zhao ZK (2016) Combined mutagenesis of Rhodosporidium toruloides for improved production of carotenoids and lipids. Biotechnol Lett 38:1733–1738. https://doi.org/10.1007/s10529-016-2148-6 View ArticleGoogle Scholar
  93. Zheng Z, Cai C, Jiang T, Zhao M, Ouyang J (2014) Enhanced l-lactic acid production from biomass-derived xylose by a mutant Bacillus coagulans. Appl Biochem Biotechnol 173:1896–1906. https://doi.org/10.1007/s12010-014-0975-2 View ArticleGoogle Scholar
  94. Zhu L, Xu Q, Jiang L, Huang H, Li S (2014a) Polydiacetylene-based high-throughput screen for surfactin producing strains of Bacillus subtilis. PLoS ONE 9:e88207. https://doi.org/10.1371/journal.pone.0088207 View ArticleGoogle Scholar
  95. Zhu P, Chen X, Li S, Xu H, Dong S, Xu Z, Zhang Y (2014b) Screening and characterization of Sphingomonas sp. mutant for welan gum biosynthesis at an elevated temperature. Bioprocess Biosyst Eng 37:1849–1858. https://doi.org/10.1007/s00449-014-1159-8 View ArticleGoogle Scholar
  96. Zhu X, Arman B, Chu J, Wang Y, Zhuang Y (2017) Development of a method for efficient cost-effective screening of Aspergillus niger mutants having increased production of glucoamylase. Biotechnol Lett 39:739–744. https://doi.org/10.1007/s10529-017-2291-8 View ArticleGoogle Scholar
  97. Zong H, Zhan Y, Li X, Peng L, Feng F, Li D (2012) A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma. Afr J Microbiol Res 6:3154–3158. https://doi.org/10.5897/AJMR11.1251 Google Scholar

Copyright

Advertisement