Abhilash PC, Srivastava S, Singh N (2011) Comparative bioremediation potential of four rhizospheric microbial species against lindane. Chemosphere 82(1):56–63
Article
PubMed
CAS
Google Scholar
Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego
Google Scholar
Alexander M (1999) Biodegradation and bioremediation. 2nd ed. San Diego, American Chemical Society. Biosciences 36:86–91
Google Scholar
Alvarez A, Yanez ML, Benimeli CS, Amoroso MJ (2012) Maize plants (Zea mays) root exudates enhance lindane removal by native Streptomyces strains. Int Biodeterior Biodegrad 66:14–18
Article
CAS
Google Scholar
Anacleto P, van den Heuvel FHM, Oliveira C, Rasmussen RR, Fernandes JO, Sloth JJ, Barbosa V, Alves RN, Marques A, Cunha SC (2017) Exploration of the phycoremediation potential of Laminaria digitata towards diflubenzuron, lindane, copper and cadmium in a multitrophic pilot-scale experiment. Food Chem Toxicol 104:95–108
Article
PubMed
CAS
Google Scholar
Anupama KS, Paul S (2010) Ex situ and in situ biodegradation of lindane by Azotobacter chroococcum. J Environ Sci Health, Part B 45:58–66
Article
CAS
Google Scholar
Aresta A, Nonnis Marzano C, Lopane C, Corriero G, Longo C, Zambonin C, Stabili L (2015) Analytical investigations on the lindane bioremediation capability of the demosponge Hymeniacidon perlevis. Mar Pollut Bull 90(1–2):143–149
Article
PubMed
CAS
Google Scholar
Asemoloye MD, Ahmad R, Jonathan SG (2017) Synergistic rhizosphere degradation of γ-hexachlorocyclohexane (lindane) through the combinatorial plant-fungal action. PLoS ONE 12(8):e0183373. https://doi.org/10.1371/journal.pone.0183373
Article
PubMed
PubMed Central
CAS
Google Scholar
Assaf-Anid N, Kun-Yu L (2002) Carbon tetrachloride reduction by Fe2C, S2 K, and FeS with vitamin B-12 as organic amendment. J Environ Eng 128:94–99
Article
CAS
Google Scholar
Awasthi N, Ahuja R, Kumar A (2000) Factors influencing the degradation of soil applied endosulfan isomers. Soil Biol Biochem 32:1697–1705
Article
CAS
Google Scholar
Bajaj S, Sagar S, Khare S, Singh DK (2017) Biodegradation of γ-hexachlorocyclohexane (lindane) by halophilic bacterium Chromohalobacter sp. LD2 isolated from HCH dumpsite. Int Biodeterior Biodegrad 122:23–28
Article
CAS
Google Scholar
Barnhoorn IEJ, van Dyk JC, Genthe B, Harding WR, Wagenaar GM, Bornman MS (2015) Organochlorine pesticide levels in Clarias gariepinus from polluted fresh water impoundments in South Africa and associated human health risks. Chemosphere 120:391–397
Article
PubMed
CAS
Google Scholar
Bashir S, Hitzfeld KL, Gehre M, Richnow HH, Fischer A (2015) Evaluating degradation of hexachlorcyclohexane (HCH) isomers within a contaminated aquifer using compound-specific stable carbon isotope analysis (CSIA). Water Res 71:187–196. https://doi.org/10.1016/j.watres.2014.12.033
Article
PubMed
CAS
Google Scholar
Becerra-Castro C, Kidd PS, Rodríguez-Garrido B, Monterroso C, Santos-Ucha P, Prieto-Fernández A (2013) Phytoremediation of hexachlorocyclohexane(HCH) contaminated soils using Cytisusstriatus and bacterial inoculants in soils with distinctorganic matter content. Env Pollut 178:202–210
Article
CAS
Google Scholar
Benezet HJ, Matsumura F (1973) Isomerization of γ-BHC to α-BHC in the environment. Nature 243:480–481
Article
CAS
Google Scholar
Benimeli CS, Castro GR, Chaile AP, Amoroso MJ (2006) Lindane removal induction by Streptomyces sp. M7. J Basic Microbiol 46:348–357
Article
PubMed
CAS
Google Scholar
Benimeli CS, González AJ, Chaile AP, Amoroso MJ (2007) Temperature and pH effect on lindane removal by Streptomyces sp. M7 in soil extract. J Basic Microbiol 47:468–473
Article
PubMed
CAS
Google Scholar
Benimeli CS, Fuentes MS, Abate CM, Amoroso MJ (2008) Bioremediation oflindane-contaminated soil by Streptomyces sp. M7 and its effects on Zea mays growth. Int Biodeterior Biodegrad 61:233–239
Article
CAS
Google Scholar
Berger M, Löffler D, Ternes T, Heininger P, Ricking M, Schwarzbauer J (2016) Hexachlorocyclohexane derivatives in industrial waste and samples from a contaminated riverine system. Chemosphere 150:219–226. https://doi.org/10.1016/j.chemosphere.2016.01.122
Article
PubMed
CAS
Google Scholar
Beyer A, Matthies M (2001) Long-range transport potential of semivolatile organic chemicals in coupled air–water systems. Environ Sci Pollut Res 8(3):173–179
Article
CAS
Google Scholar
Bezama A, Navia R, Mendoza G, Barra R (2008) Remediation technologies for organochlorine- contaminated sites in developing countries. Rev Environ Contam Toxicol 193:1–29
PubMed
CAS
Google Scholar
Blondel C, Khelalfa F, Reynaud S, Fauvelle F, Raveton M (2016) Effect of organochlorine pesticides exposure on the maize root metabolome assessed using high-resolution magic-angle spinning (1)H NMR spectroscopy. Environ Pollut 214:539–548. https://doi.org/10.1016/j.envpol.2016.04.057
Article
PubMed
CAS
Google Scholar
Böltner D, Moreno-Morillas S, Ramos JL (2005) 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environ Microbiol 7(9):1329–1338
Article
PubMed
Google Scholar
Boyle AW, Haggblom MM, Young LY (1999) Dehalogenation of lindane (γ-hexachlorocyclohexane) by anaerobic bacteria from marine sediments and by sulfate-reducing bacteria. FEMS Microbiol Ecol 29:379–387
CAS
Google Scholar
Brown HM, Kearney PC (1991) Plant biochemistry, environmental properties and global impact of the sulfonylurea herbicides. ACS Publication, Washington DC, pp 32–49
Google Scholar
Caicedo P, Schroder A, Ulrich N, Schroter U, Schuurmann G, Paschke A (2011) Determination of lindane leachability in soil–biosolid systems and its bioavailability in wheat plants. Chemosphere 84:397–402
Article
PubMed
CAS
Google Scholar
Camacho-Pérez B (2010a) Biorrestauración de suelos agrícolas contaminados conagroquímicos utilizando reactores de suelos activados convencionales y electrobioquímico de nuevo tipo. Bioremediation of agricultural soils polluted with lindane using slurry bioreactors and a novel bioelectrochemical reactor. Sc D Thesis, Interim Report. CINVESTAV del IPN, México D.F., México
Camacho-Pérez B, Ríos-Leal E, Barrera-Cortés J, Esparza-García F, Rinderknecht- Seijas N, Poggi-Varaldo HM (2010) Treatment of soils contaminated with γ-hexachlorocyclohexane in sequential methanogenic-aerobic slurry bioreactors. J Biotechnol 150:559–561
Article
Google Scholar
Camacho-Pérez B, Ríos-Leal E, Rinderknecht-Seijas N, Poggi-Varaldo HM (2011) Enzymes involved in the biodegradation of hexachlorocyclohexane: A mini review. J Environ Manage 95(Suppl):S306–S318. https://doi.org/10.1016/j.jenvman.2011.06.047
Article
PubMed
CAS
Google Scholar
Carrillo-Pérez E, Ruiz-Manríquez A, Yeomans-Reina H (2004) Isolation, identification and evaluation of a mixed culture of microorganisms capable of degrading DDT (in Spanish). Revista Internacional de Contaminación Ambiental 20:69–75
Google Scholar
Ceci A, Pierro L, Riccardi C, Pinzari F, Maggi O, Persiani AM, Gadd GM, Petrangeli Papini M (2015) Biotransformation of β-hexachlorocyclohexane by the saprotrophic soil fungus Penicillium griseofulvum. Chemosphere 137:101–107. https://doi.org/10.1016/j.chemosphere.2015.05.074
Article
PubMed
CAS
Google Scholar
Ceremonie H, Boubakri H, Mavingui P, Simonet P, Vogel TM (2006) Plasmid-encoded gamma-hexachlorocyclohexane degradation genes and insertion sequences in Sphingobium francense (ex-Sphingomonas paucimobilis Sp +). FEMS Microbiol Lett 257:243–252
Article
PubMed
CAS
Google Scholar
Chaves R, López D, Macías F, Casares J, Monterroso C (2013) Application of system dynamics technique to simulate the fate of persistent organic pollutants in soils. Chemosphere 90(9):2428–2434
Article
PubMed
CAS
Google Scholar
Chouychai W, Kruatrachue M, Lee H (2015) Effect of plant growth regulators on phytoremediation of hexachlorocyclohexane contaminated soil. Int J Phytoremediation 17(11):1053–1059. https://doi.org/10.1080/15226514.2014.989309
Article
PubMed
CAS
Google Scholar
Concha-Graña E, Turnes-Carou MI, Muniategui-Lorenzo S, López-Mahia P, Prada-Rodriguez D, Fernández-Fernández E (2006) Evaluation of HCH isomers and metabolites in soils, leachates, river water and sediments of a highly contaminated area. Chemosphere 6:588–595
Article
CAS
Google Scholar
Crowley DE, Alvey S, Gilbert ES (1997) Rhizosphere ecology of xenobiotic-degrading microorganisms. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants. ACS Symposium Series 777. American Chemical Society, Washington, DC, pp 20–36
Chapter
Google Scholar
Dadhwal M, Jit S, Kumari H, Lal R (2009) Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. Int J Syst Evol Microbiol 59(12):3140–3144
Article
PubMed
CAS
Google Scholar
Datta J, Maiti AK, Modak DP, Chakrabartty PK, Bhattacharyya P, Ray KR (2000) Metabolism of γ-hexachlorocyclohexane by Arthrobacter citreus strain BI-100: identification of metabolites. J Gen Appl Microbiol 46:59–67
Article
PubMed
CAS
Google Scholar
Dogra C, Raina V, Pal R, Suar M, Lal S, Gartemann KH, van der Meer JR, Lal R (2004) Organization of lin genes and IS6100 among different strains of hexachlorocyclohexane degrading Sphingomonas paucimobilis: evidence for horizontal gene transfer. J Bacteriol 186:2225–2235
Article
PubMed
PubMed Central
CAS
Google Scholar
De Paolis MR, Lippi D, Guerriero E, Polcaro CM, Donati E (2013) Biodegradation of a-, b-, and c-Hexachlorocyclohexane by Arthrobacter fluorescens and Arthrobacter giacomelloi. Appl Biochemis Biotechnol 170:514–524
Article
CAS
Google Scholar
Dubey RK, Tripathi V, Singh N, Abhilash PC (2014) Phytoextraction and dissipation of lindane by Spinacia oleracea L. Ecotoxicol Environ Saf 109:22–26. https://doi.org/10.1016/j.ecoenv.2014.07.036
Article
PubMed
CAS
Google Scholar
Elcey CD, Kunhi AAM (2010) Substantially enhanced degradation of hexachlorocyclohexane isomers by a microbial consortium on acclimation. J Agric Food Chem 58:1046–1054
Article
PubMed
CAS
Google Scholar
Elliott DW, Zhang WF (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926
Article
PubMed
CAS
Google Scholar
Fan X, Liu X, Huang R, Liu Y (2011) Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach. Microb Cell Fact 13:11–33
Google Scholar
Fang H, Cai L, Yang Y, Ju F, Li X, Yu Y, Zhang T (2014) Metagenomic analysis reveals potential biodegradation pathways of persistent pesticides in freshwater and marine sediments. Sci Total Environ 1(470–471):983–992. https://doi.org/10.1016/j.scitotenv.2013.10.076
Article
CAS
Google Scholar
Francis AJ, Spanggord RJ, Ouchi GI (1975) Degradation of lindane by Escherichia coli. Appl Microbiol 29:567–568
PubMed
PubMed Central
CAS
Google Scholar
Fuentes MS, Benimeli CS, Cuozzo SA, Amoroso MJ (2010) Isolation of pesticide-degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides. Int Biodeterior Biodegrad 64:434–441
Article
CAS
Google Scholar
Fuentes MS, Saez JM, Benimeli CS, Motoso MJ (2011) Lindane biodegradation by defined consortia of indigenous Streptomyces strains. Water Air Soil Poll 222:217–231
Article
CAS
Google Scholar
García-Rivero M, Peralta-Pérez MR (2008) Co-metabolism in the biodegradation of hydrocarbons. Revista Mexicana de Ingeniería Biomédica 7:1–12
Google Scholar
Garg N, Lata P, Jit S, Sangwan N, Singh AK, Dwivedi V, Niharika N, Kaur J, Saxena A, Dua A, Nayyar N, Kohli P, Geueke B, Kunz P, Rentsch D, Holliger C, Kohler HP, Lal R (2016) Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation. Biodegradation 7(2–3):179–193. https://doi.org/10.1007/s10532-016-9765-6
Article
CAS
Google Scholar
Gianfreda L, Rao M (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354
Article
CAS
Google Scholar
Girish K, Afsar M, Radha S, Manonmani HK, Kunhi AAM (2000) Effect of induction and acclimation of a microbial consortium on its ability to degrade isomeric hexachlorocyclohexane (HCH). In: Modern trends and perspectives in food packaging for 21st century, Souvenir, 14th Indian convection of food scientists and technologists (ICFOST 2000). Central Food Technological Research Institute (CFTRI), Mysore
Golfinopoulos SK, Nikolaou AD, Kostopoulou MN, Xilourgidis NK, Vagi MC et al (2003) Organochlorine pesticides in the surface waters of Northern Greece. Chemosphere 50:507–516
Article
PubMed
CAS
Google Scholar
Gong T, Liu R, Zuo Z, Che Y, Yu H, Song C, Yang C (2016) Metabolic Engineering of Pseudomonas putida KT2440 for Complete Mineralization of Methyl Parathion and γ-Hexachlorocyclohexane. ACS Synth Biol 5(5):434–442. https://doi.org/10.1021/acssynbio.6b00025
Article
PubMed
CAS
Google Scholar
Guillén-Jiménez FM, Cristiani-Urbina E, Cancino-Díaz JC, Flores-Moreno JL, Barragán-Huerta BE (2012) Lindane biodegradation by the Fusarium verticillioides AT-100 strain, isolated from Agave tequilana leaves: kinetic study and identification of metabolites. Int Biodeterior Biodegrad 74:36–47
Article
CAS
Google Scholar
Gupta A, Kaushik CP, Kaushik A (2000) Degradation of hexacholorocyclohexane (HCH; α, β, γ and δ) by Bacillus circulans and Bacillus brevis isolated from soil contaminated with HCH. Soil Biol Biochem 32:1803–1805
Article
CAS
Google Scholar
Gupta A, Kaushik CP, Kaushik A (2001) Degradation of hexachlorocyclohexane isomers by two strains of Alcaligenes faecalis isolated from a contaminated site. Bull Environ Contam Toxicol 66:794–800
Article
PubMed
CAS
Google Scholar
Haby PA, Crowley DE (1996) Biodegradation of 3-chlorobenzoate as affected by rhizodeposition and selected carbon substrates. J Environ Qual 25:304–310
Article
CAS
Google Scholar
Herrero-Mercado M, Waliszewski SM, Valencia-Quintana R, Caba M, Hernández-Chalate F, García-Aguilar E et al (2010) Organochlorine pesticide levels in adipose tissue of pregnant women in Veracruz, Mexico. Bulletin Environ Cont Toxicol 84:652–656
Article
CAS
Google Scholar
Hoagland RE, Zablotowicz RM (2001) The role of plant and microbial hydrolytic enzymes in pesticide metabolism. In: Hall JC, Hoagland RE, Zablotowicz RM (eds) Pesticide biotransformation in plants and microorganisms: similarities and divergences. ACS Symposium Series 777. American Chemical Society, Washington, DC, pp 58–88
Google Scholar
Homolková M, Hrabák P, Kolář M, Černík M (2015) Degradability of hexachlorocyclohexanes in water using ferrate (VI). Water Sci Technol 71(3):405–411. https://doi.org/10.2166/wst.2014.516
Article
PubMed
CAS
Google Scholar
Huntjens JLM, Brouwer W, Grobben K, Jansma O, Scheffer F, Zehnder AJB (1988) Biodegradation of alpha-hexachlorocyclohexane by a bacterium isolated from polluted soil. In: Wolf K, van der Brink WJ, Colon FJ (eds) Contaminated Soil 88. Kluwer Academic Publishers, Dordrecht, pp 733–737
Google Scholar
Imai R, Nagata Y, Senoo K, Wada H, Fukuda M, Takagi M, Yano K (1989) Dehydrochlorination of g-hexachlorocyclohexane (g-BHC) by γ-BHC-assimilating Pseudomonas paucimobilis. Agric Biol Chem 53:2015–2017
CAS
Google Scholar
Ito M, Prokop Z, Klvana M, Otsubo Y, Tsuda M, Damborsky J, Nagata Y (2007) Degradation of beta-hexachlorocyclohexane by haloalkane dehalogenase LinB from gamma-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MI1205. Arch Microbiol 188:313–325
Article
PubMed
CAS
Google Scholar
Ivdra N, Fischer A, Herrero-Martin S, Giunta T, Bonifacie M, Richnow HH (2017) Carbon, hydrogen and chlorine stable isotope fingerprinting for forensic investigations of hexachlorocyclohexanes. Environ Sci Technol 51(1):446–454. https://doi.org/10.1021/acs.est.6b03039
Article
PubMed
CAS
Google Scholar
Jagnow G, Haider K, Ellwardt PC (1977) Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultative anaerobic bacteria. Arch Microbiol 115:285–292
Article
PubMed
CAS
Google Scholar
Janssen DB, Oppentocht JE, Poelarends GJ (2001) Microbial dehalogenation. Curr Opin Biotechol 12:254–258
Article
CAS
Google Scholar
Jit S, Dadhwal M, Kumari H, Jindal S, Kaur J et al (2011) Evaluation of hexachlorocyclohexane contamination from the last lindane production plant operating in India. Environ Sci Pollut Res Int 18(4):586–597
Article
PubMed
CAS
Google Scholar
Jürgens HJ, Roth R (1989) Case study and proposed decontamination steps of the soil and groundwater beneath a closed herbicide plant in Germany. Chemosphere 18:1163–1169
Article
Google Scholar
Kaur J, Moskalikova H, Niharika N, Sedlackova M, Hampl A, Damborsky J et al (2013) Sphingobium baderi sp. nov, isolated from a hexachlorocyclohexane dump site. Int J Syst Evolut Microbiol 63:673–678
Article
CAS
Google Scholar
Kaur H, Kapoor S, Kaur G (2016) Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane. Environ Monit Assess 188(10):588
Article
PubMed
CAS
Google Scholar
Khan F, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71:95–122
Article
PubMed
Google Scholar
Kiran GS, Selvin J, Manilal A, Sujith S (2011) Biosurfactants as green stabilizers for the biological synthesis of nanoparticles. Crit Rev Biotechnol 31(4):354–364
Article
PubMed
CAS
Google Scholar
Kumar M, Chaudhary P, Dwivedi M, Kumar R, Paul D, Jain RK, Garg SK, Kumar A (2005) Enhanced biodegradation of β- and δ-hexachlorocyclohexane in the presence of α- and γ-isomers in contaminated soils. Environ Sci Technol 39:4005–4011
Article
PubMed
CAS
Google Scholar
Kumar M, Gupta SK, Garg SK, Kumar A (2006) Biodegradation of hexachlorocyclohexane isomers in contaminated soils. Soil Biol Biochem 38:2318–2327
Article
CAS
Google Scholar
Kumar D, Kumar A, Sharma J (2016) Degradation study of lindane by novel strains Kocuria sp. DAB-1Y and Staphylococcus sp. DAB-1W. Bioresour Bioprocess 3:53–60
Article
PubMed
PubMed Central
Google Scholar
Kumar D, Jaswal S, Chopra S (2017) Co-degradation study of Lindane and Chlorpyrifos by novel bacterial isolates. Int J Environ Waste Manage 20(4):283–299
Article
Google Scholar
Kumari R, Subudhi S, Suar M, Dhingra G, Raina V, Dogra C, Lal S, Van der Meer JR, Holliger C, Lal R (2002) Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl Environ Microbiol 68:6021–6028
Article
PubMed
PubMed Central
CAS
Google Scholar
Kuritz T, Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol 61:234–238
PubMed
PubMed Central
CAS
Google Scholar
Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler HP-E, Holliger C, Jackson C, Oakeshott JG (2010) The biochemistry of microbial degradation of hexachlorocyclohexane (HCH) and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80
Article
PubMed
PubMed Central
CAS
Google Scholar
Lal D, Jindal S, Kumari H, Jit S, Nigam A, Sharma P, Kumari K, Lal R (2015) Bacterial diversity and real-time PCR based assessment of linA and linB gene distribution at hexachlorocyclohexane contaminated sites. J Basic Microbiol 55(3):363–373. https://doi.org/10.1002/jobm.201300211
Article
PubMed
CAS
Google Scholar
Lamoureux GL, Rusness DG (1980) Pentachloronitrobenzene metabolism in peanut. 1. Mass spectral characterization of seven glutathione- related conjugates produced in vivo or in vitro. Agric Food Chem 28:1057–1070
Article
CAS
Google Scholar
Laquitaine L, Durimel A, de Alencastro LF, Jean-Marius C, Gros O, Gaspard S (2016) Biodegradability of HCH in agricultural soils from Guadeloupe (French West Indies): identification of the lin genes involved in the HCH degradation pathway. Environ Sci Pollut Res Int 23(1):120–127. https://doi.org/10.1007/s11356-015-5875-7
Article
PubMed
CAS
Google Scholar
Li YF, Scholtz MT, Van Heyst BJ (2003) Global gridded emission inventories of beta-hexachlorocyclohexane. Environ Sci Technol 37:3493–3498
Article
PubMed
CAS
Google Scholar
Lima TM, Procópio LC, Brandão FD, Carvalho AM, Tótola MR, Borges AC (2011) Biodegradability of bacterial surfactants. Biodegradation 22:585–592
Article
PubMed
CAS
Google Scholar
Lodha B, Bhat P, Kumar MS, Vaidya AN, Mudliar S, Killedar DJ, Chakrabarti T (2007) Bioisomerization kinetics of γ-HCH and biokinetics of Pseudomonas aeruginosa degrading technical HCH. Biochem Eng J 35:12–19
Article
CAS
Google Scholar
Loredana S, Graziano P, Antonio M, Carlotta NM, Caterina L, Maria AA, Carlo Z, Giuseppe C, Pietro A (2017a) Lindane bioremediation capability of bacteria associated with the demosponge Hymeniacidon perlevis. Mar Drugs 15(4):E108. https://doi.org/10.3390/md15040108
Article
PubMed
CAS
Google Scholar
Loredana S, Graziano P, Antonio M, Carlotta NM, Caterina L, Maria AA, Carlo Z, Corriero Giuseppe C, Pietro A (2017b) Lindane bioremediation capability of bacteria associated with the demosponge Hymeniacidon perlevis. Mar Drugs 15(108):1–15
Google Scholar
Lu Y, Yu Y, Zhou R, Sun W, Dai C, Wan P, Zhang L, Hao D, Ren H (2011) Cloning and characterisation of a novel 2,4-dichlorophenol hydroxylase from a metagenomic library derived from polychlorinated biphenyl-contaminated soil. Biotechnol Lett 33(6):1159–1167
Article
PubMed
CAS
Google Scholar
MacRae IC, Raghu K, Bautista EM (1969) Anaerobic degradation of the insecticide lindane by Clostridium sp. Nature 221:859–860
Article
PubMed
CAS
Google Scholar
Manickam N, Mau M, Schlo¨mann M (2006) Characterization of the novel HCH-degrading strain, Microbacterium sp. ITRC1. Appl Microbiol Biotechnol 69:580–588
Article
PubMed
CAS
Google Scholar
Manickam N, Reddy MK, Saini HS, Shanker R (2008) Isolation of hexachlorocyclohexane-degrading Sphingomonas sp. by dehalogenase assay and characterization of genes involved in c-HCH degradation. J Appl Microbiol 104:952–960
Article
PubMed
CAS
Google Scholar
Manickam N, Pathak A, Saini HS, Mayilraj S, Shanker R (2010) Metabolic profiles and phylogenetic diversity of microbial communities from chlorinated pesticides contaminated sites of different geographical habitats of India. J Appl Microbiol 109(4):1458–1468
Article
PubMed
CAS
Google Scholar
Maqbool Z, Hussain S, Imran M, Mahmood F, Shahzad T, Ahmed Z, Azeem F, Muzammil S (2016) Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review. Environ Sci Pollut Res Int 23(17):16904–16925. https://doi.org/10.1007/s11356-016-7003-8
Article
PubMed
Google Scholar
Math RK, Asraful Islam SM, Cho KM, Hong SJ, Kim JM, Yun MG, Cho JJ, Heo JY, Lee YH, Kim H, Yun HD (2010) Isolation of a novel gene encoding a 3,5,6-trichloro-2-pyridinol degrading enzyme from a cow rumen metagenomic library. Biodegradation 21(4):565–573
Article
PubMed
CAS
Google Scholar
Mertens B (2006) Microbial Monitoring and Degradation of Lindane in Soil. Ph.D. thesis, Ghent University, Belgium, ISBN 90-5989-126-0. Pp. 187
Milun V, Lušić J, Despalatović M (2016) Polychlorinated biphenyls, organochlorine pesticides and trace metals in cultured and harvested bivalves from the eastern Adriatic coast (Croatia). Chemosphere 153:18–27. https://doi.org/10.1016/j.chemosphere.2016.03.039
Article
PubMed
CAS
Google Scholar
Miyauchi K, Suh SK, Nagata Y, Takagi M (1998) Cloning and sequencing of a 2,5-dichlorohydroquinone reductive dehalogenase gene whose product is involved in degradation of hexachlorocyclohexane by Sphingomonas paucimobilis. J Bacteriol 180:1354–1359
PubMed
PubMed Central
CAS
Google Scholar
Mohapatra S, Pandey M (2015) Biodegradation of hexachlorocyclohexane (HCH) isomers by white rot fungus, Pleurotus florida. J Bioremed Biodeg 6:280–286
Article
CAS
Google Scholar
Mohn WW, Garmendia J, Galvao TC, de Lorenzo V (2006) Surveying biotransformations with a la carte genetic traps: translating dehydrochlorination of lindane (γ-hexachlorocyclohexane) into lacZ-based phenotypes. Environ Microbiol 8:546–555
Article
PubMed
CAS
Google Scholar
Moldes AB, Paradelo R, Rubinos D, Devesa-Rey R, Cruz JM, Barral MT (2011) Ex-situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus. J Agric Food Chem 59:9443–9447
Article
PubMed
CAS
Google Scholar
Mougin C, Pericaud C, Malosse C, Laugero C, Asther M (1996) Biotransformation of the insecticide lindane by the white rot basidiomycete Phanerochaete chrysosporium. Pestic Sci 47:51–59
Article
CAS
Google Scholar
Mougin C, Pericaud C, Dubroca J, Asther M (1997) Enhanced mineralization of lindane in soils supplemented with the white rot basidiomycete Phanerochaete chrysosporium. Soil Biol Biochem 29:1321–1324
Article
Google Scholar
Mrema EJ, Rubino FM, Brambilla G, Moretto A, Tsatsakis AM, Colosio C (2013) Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology 10(307):74–88
Article
CAS
Google Scholar
Mugin CP, Corio-Costet MF, Werck-Reichhart D (2001) Plant and fungal cytochrome P-450 s: their role in pesticide transformation. ACS Publication, Washington DC, pp 166–182
Google Scholar
Muñiz S, Gonzalvo P, Valdehita A, Molina-Molina JM, Navas JM, Olea N, Fernández-Cascán J, Navarro E (2017) Ecotoxicological assessment of soils polluted with chemical waste from lindane production: use of bacterial communities and earthworms as bioremediation tools. Ecotoxicol Environ Saf 145:539–548. https://doi.org/10.1016/j.ecoenv.2017.07.070
Article
PubMed
CAS
Google Scholar
Murthy HMR, Manonmani HK (2007) Aerobic degradation of technical hexachlorocyclohexane by a defined microbial consortium. J Hazard Mat 149(1):18–25
Article
CAS
Google Scholar
Nagata Y, Miyauchi K, Takagi M (1999) Complete analysis of genes and enzymes for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J Ind Microbiol Biotechnol 23:380–390
Article
PubMed
CAS
Google Scholar
Nagata Y, Prokop Z, Sato Y, Jerabek P, Kumar A, Ohtubo Y, Tsuda M, Damborsky J (2005) Degradation of beta-hexachlorocyclohexane by haoloalkane dehydrogenase Lin B from Sphingomonas paucimobilis UT26. App Env Microbiol 71:2183–2185
Article
CAS
Google Scholar
Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M (2007) Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 76:741–752
Article
PubMed
CAS
Google Scholar
Nagpal V, Paknikar KM (2006) Integrated approach for the enhanced degradation of lindane. Indian J Biotechnol 5:400–405
CAS
Google Scholar
Nalin R, Simonet P, Vogel TM, Normand P (1999) Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Int J Syst Bacteriol 49:19–23
Article
PubMed
Google Scholar
Nanasato Y, Namiki S, Oshima M, Moriuchi R, Konagaya K, Seike N, Otani T, Nagata Y, Tsuda M, Tabei Y (2016) Biodegradation of γ-hexachlorocyclohexane by transgenic hairy root cultures of Cucurbita moschata that accumulate recombinant bacterial LinA. Plant Cell Rep 35(9):1963–1974. https://doi.org/10.1007/s00299-016-2011-1
Article
PubMed
CAS
Google Scholar
Nandavaram A, Sagar AL, Madikonda AK, Siddavattam D (2016) Proteomics of Sphingobium indicum B90A for a deeper understanding of hexachlorocyclohexane (HCH) bioremediation. Rev Environ Health 31(1):57–61. https://doi.org/10.1515/reveh-2015-0042
Article
PubMed
CAS
Google Scholar
Nawab A, Aleem A, Malik A (2003) Determination of organochlorine pesticides in agricultural soil with special reference to c-HCH degradation by Pseudomonas strains. Biores Technol 88:41–46
Article
CAS
Google Scholar
Nichols TD, Wolf DC, Roders HB, Beyrouty CA, Renolds CM (1997) Rhizosphere microbial populations in contaminated soils. Water Air Soil Pollut 95:165–178
CAS
Google Scholar
Ohisa N, Yamaguchi M (1978) Gamma-BHC degradation accompanied by the growth of Clostridium rectum isolated from paddy field soil. Agric Bio Chem 42:1819–1823
CAS
Google Scholar
Okeke BC, Siddique T, Arbestain MC, Frankenberger WT (2002) Biodegradation of c-hexachlorocyclohexane (Lindane) and a-hexachlorocyclohexane in water and a soil slurry by a Pandoraea species. J Agric Food Chem 50:2548–2555
Article
PubMed
CAS
Google Scholar
Osterreicher-Cunha P, Langenbach T, Torres JP, Lima AL, de Campos TM (2003) HCH distribution and microbial parameters after liming of a heavily contaminated soil in Rio de Janeiro. Environ Resource 93:316–327
CAS
Google Scholar
Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applicatications of biosurfactants: recent advances. Int J Mol Sci 12(1):633–654
Article
PubMed
PubMed Central
CAS
Google Scholar
Paknikar KM, Nagpal V, Pethkar AV, Rajwade JM (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mat 6:370–374
Article
CAS
Google Scholar
Pal R, Bala S, Dadhwal M, Kumar M, Dhingra G, Prakash O, Prabagaran SR, Shivaji S, Cullum J, Holliger C, Lal R (2005) Hexachlorocyclohexane- degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp_, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55:1965–1972
Article
PubMed
CAS
Google Scholar
Pannu R, Kumar D (2017) Process optimization of γ- Hexachlorocyclohexane degradation using three novel Bacillus sp. strains. Biocatal Agric Biotechol 11:97–107
Google Scholar
Pearce SL, Oakeshott JG, Pandey G (2015) Insights into ongoing evolution of the hexachlorocyclohexane catabolic pathway from comparative genomics of ten Sphingomonadaceae strains. G3 (Bethesda) 5(6):1081–1094. https://doi.org/10.1534/g3.114.015933
Article
Google Scholar
Pesce SF, Wunderlin DA (2004) Biodegradation of lindane by a native bacterial consortium isolated from contaminated river sediment. Int Biodeterior Biodegrad 54:255–260
Article
CAS
Google Scholar
Pesce SF, Cazenave J, Monferrán MV, Frede S, Wunderlin DA (2008) Integratedsurvey on toxic effects of lindane on neotropical fish: Corydoraspaleatus and Jenynsiamultidentata. Environ Pollut 156:775–783
Article
PubMed
CAS
Google Scholar
Phillips TM, Seech AG, Lee H, Trevors JT (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–392
Article
PubMed
CAS
Google Scholar
Phillips TM, Lee H, Trevors JT, Seech AG (2006) Full-scale in situ bioremediationof hexachlorocyclohexane-contaminated soil. J Chem Technol Biotech 81:289–298
Article
CAS
Google Scholar
Pino NJ, Domínguez MC, Penuela GA (2011) Isolation of a selected microbialconsortium capable of degrading methyl parathion and p-nitrophenol from a contaminated soil site. J Environ Sci Health 46:173–180
Article
CAS
Google Scholar
Polti MA, Aparicio JD, Benimeli CS, Amoroso MJ (2014) Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria. Int Biodeterior Biodeg 88:48–55
Article
CAS
Google Scholar
Prakash O, Suar M, Raina V, Dogra C, Pal R, Lal R (2004) Residues of hexachlorocyclohexane isomers in soil and water samples from Delhi and adjoining areas. Curr Sci 87:73–77
CAS
Google Scholar
Quintero JC, Moreira MT, Feijoo G, Lema JM (2005) Anaerobic degradation of hexachlorocyclohexane isomers in liquid and soil slurry systems. Chemosphere 61:528–536
Article
PubMed
CAS
Google Scholar
Raymond J, Rogers T, Shonnard D, Kline A (2001) A review of structure based biodegradation estimation methods. J Hazard Mater 84:189–215
Article
PubMed
CAS
Google Scholar
Rigas F, Papadopoulou K, Philippoussis A, Papadopoulou M, Chatzipavlidis J (2009) Bioremediation of lindane contaminated soil by Pleurotus ostreatus in non sterile conditions using multilevel factorial design. Water Air Soil Pollut 197:121–129
Article
CAS
Google Scholar
Rijnaarts HMM, Bachmann A, Jumelet JC, Zehnder AJB (1990) Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of ã-hexachlorocyclohexane in a calcerous soil. Environ Sci Technol 24:1349–1354
Article
CAS
Google Scholar
Robles-Gonzalez IV, Fava F, Poggi-Varaldo HM (2008) A review on slurry bioreactors for bioremediation of soils and sediments. Microb Cell Factories 7:1–16
Article
CAS
Google Scholar
Roh Y, Cho KS, Lee S (2001) Electrochemical reduction of trichloroethene contaminated groundwater using palladized iron oxides. J Environ Sci Health A 36:923–933
Article
CAS
Google Scholar
Romano ML, Stephenson GR, Tal A, Hall JC (1993) The effect of monooxygenase and glutathione S-transferase inhibitors on the metabolism of diclofop-methyl and fenoxaprop-ethyl in barley and wheat. Pesti Biochem Physiol 46:181–189
Article
CAS
Google Scholar
Roy C, Gaillardon P, Montfort F (2000) The effect of soil moisture content on the sorption of five sterol biosynthesis inhibiting fungicides as a function of their physicochemical properties. Pest Manag Sci 56:795–803
Article
CAS
Google Scholar
Saez JM, Alvarez A, Benimeli CS, Amoroso MJ (2014) Enhanced lindane removal from soil slurry by immobilized Streptomyces consortium. Int Biodeterior Biodeg 93:63–69
Article
CAS
Google Scholar
Sahu SK, Patnaik KK, Sharmila M, Sethunathan N (1990) Degradation of alpha-, beta-, and gamma-hexachlorocyclohexane by a soil bacterium under aerobic conditions. Appl Environ Microbiol 56:3620–3622
PubMed
PubMed Central
CAS
Google Scholar
Sahu SK, Patnaik KK, Bhuyan S, Sreedharan B, Kurihara N, Adhya TK, Sethunathan N (1995) Mineralization of α-, γ- and β-isomers of hexachlorocyclohexane by a soil bacterium under aerobic conditions. J Agric Food Chem 43:833–837
Article
CAS
Google Scholar
Sáinz MJ, González-Penalta B, Vilariño A (2006) Effects of hexachlorocyclohexane onrhizosphere fungal propopagules and root colonization by arbuscular mycorrhizal fungi in Plantago lanceolata. Eur J Soil Sci 57:83–90
Article
CAS
Google Scholar
Salam JA, Das N (2014) Lindane degradation by Candida VITJzN04, a newly isolated yeast strain from contaminated soil: kinetic study, enzyme analysis and biodegradation pathway. World J Microbiol Biotechnol 30:1301–1311
Article
PubMed
CAS
Google Scholar
Salam JA, Das N (2015) Degradation of lindane by a novel embedded bio-nano hybrid system in aqueous environment. Appl Microbiol Biotechnol 99(5):2351–2360. https://doi.org/10.1007/s00253-014-6112-x
Article
PubMed
CAS
Google Scholar
Salam JA, Hatha MAA, Das N (2017) Microbial-enhanced lindane removal by sugarcane (Saccharum officinarum) in doped soil-applications in phytoremediation and bioaugmentation. J Environ Manag 193:394–399. https://doi.org/10.1016/j.jenvman.2017.02.006
Article
CAS
Google Scholar
Salem JA, Das N (2012) Remediation of lindane from environment-an overview. Int J Adv Biol Res 2:9–15
Google Scholar
Salem JAA, Lakshmi V, Das D, Das N (2013) Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil. World J Microbiol Biotechnol 29(3):475–4873
Article
CAS
Google Scholar
Sangwan N, Lata P, Dwivedi V, Singh A, Niharika N (2012) Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. PLoS ONE 7(9):e46219. https://doi.org/10.1371/journal.pone.0046219
Article
PubMed
PubMed Central
CAS
Google Scholar
Sangwan N, Verma H, Kumar R, Negi V, Lax S, Khurana P, Khurana JP, Gilbert JA, Lal R (2014) Reconstructing an ancestral genotype of two hexachlorocyclohexane-degrading Sphingobium species using metagenomic sequence data. ISME J 8(2):398–408. https://doi.org/10.1038/ismej.2013.153
Article
PubMed
CAS
Google Scholar
Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193
Article
CAS
Google Scholar
Senoo K, Wada H (1989) Isolation and identification of an aerobic gamma-HCH-decomposing bacterium from soil. Soil Sci Plant Nutr 35:79–87
Article
CAS
Google Scholar
Shong J, Jimenez Diaz MR, Collins CH (2012) Towards synthetic microbialconsortia forbioprocessing. Curr Opi Biotechnol 23:798–802
Article
CAS
Google Scholar
Sineli PE, Tortella G, Dávila Costa JS, Cuozzo SA (2016) Evidence of α-, β- and γ-HCH mixture aerobic degradation by the native actinobacteria Streptomyces sp. M7. World J Microbiol Biotechnol 32:81–90
Article
PubMed
CAS
Google Scholar
Singh BK, Kuhad RC (1999) Biodegradation of lindane (ã-hexachlorocyclohexane) by the white- rot fungus Trametes hirsustus. Lett Appl Microbiol 28:238–241
Article
PubMed
CAS
Google Scholar
Singh R, Manickam N, Mudiam MKR, Murthy RC, Misra V (2013) An integrated (nano-bio) technique for degradation of γ-HCH contaminated soil. J Hazard Mat 258–259:35–41
Article
CAS
Google Scholar
Stomp AM, Han KH, Wilbert S, Gordon MP (1993) Genetic improvement of tree species for remediation of hazardous wastes. In Vitro Cell Dev Biol Plant 29:227–232
Article
Google Scholar
Sul WJ, Park J, Quensen JF 3rd, Rodrigues JL, Seliger L, Tsoi TV, Zylstra GJ, Tiedje JM (2009) DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol 75(17):5501–5506
Article
PubMed
PubMed Central
CAS
Google Scholar
Svrcek J, Marhoul A, Kacer P, Kuzma M, Panek L, Cerveny L (2010) The influence of operating conditions on the efficiency of vapour phase hydrogen peroxide in degradation of 4-(dimethylamino) benzaldehyde. Chemosphere 81(5):617–625
Article
PubMed
CAS
Google Scholar
Thomas JC, Berger F, Jacquier M, Bernillon D, Baud-Grasset F, Truffaut N, Normand P, Vogel TM, Simonet P (1996) Isolation and characterization of a novel c-hexachlorocyclohexane- degrading bacterium. J Bacteriol 178:6049–6055
Article
PubMed
PubMed Central
CAS
Google Scholar
Tu CM (1976) Utilization and degradation of lindane by soil microorganisms. Arch Microbiol 108:259–263
Article
PubMed
CAS
Google Scholar
Usman M, Tascone O, Rybnikova V, Faure P, Hanna K (2017) Application of chemical oxidation to remediate HCH-contaminated soil under batch and flow through conditions. Environ Sci Pollut Res Int 24(17):14748–14757. https://doi.org/10.1007/s11356-017-9083-5
Article
PubMed
CAS
Google Scholar
Van Eerd LL (2003) Pesticide metabolism in plants and microorganisms. Weed Sci 51:472–495
Article
Google Scholar
van Liere H, Staps S, Pijls C, Zwiep G, Lassche R et al. (2003) Full scale case: successful in situ bioremediation of a HCH ontaminated industrial site in central Europe (The Netherlands). In: Forum book, 7th International HCH and Pesticides Forum. Sustainable Development and Ecological Research Center. J Vijgen (ed.) Kiev, Ukraine. pp. 128–132
Venier M, Hung H, Tych W, Hites RA (2012) Temporal trends of persistent organic pollutants: a comparison of different time series models. Environ Sci Technol 46(7):3928–3934
Article
PubMed
CAS
Google Scholar
Verma H, Kumar R, Oldach P, Sangwan N, Khurana JP, Gilbert JA, Lal R (2014) Comparative genomic analysis of nine Sphingobium strains: insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways. BMC Genom 15(1):1014. https://doi.org/10.1186/1471-2164-15-1014
Article
CAS
Google Scholar
Vlčková K, Hofman J (2012) A comparison of POPs bioaccumulation in Eiseniafetida in natural and artificial soils and the effects of aging. Environ Pollut 160:49–56
Article
PubMed
CAS
Google Scholar
Wattanaphon HT, Kerdsin A, Thammacharoen C, Sangvanich P, Vangnai AS (2008) A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization. J Appl Microbiol 23:1365–2672
Google Scholar
Wiren-Lehr S, Scheunert L, Dorfler U (2002) Mineralisation of plant-incorporated residues of 14C-isoproturon in arable soils originating from different farming systems. Geoderma 105:351–366
Article
Google Scholar
Wu J, Hong Q, Han P, He J, Li S (2007a) A gene linB2 responsible for the conversion of γ-HCH and 2,3,4,5,6-pentachlorocyclohexanol in Sphingomonas sp. BHC-A. Appl Microbiol Biotechnol 73:1097–1105
Article
PubMed
CAS
Google Scholar
Wu J, Hong Q, Sun Y, Hong Y, Yan Q, Li S (2007b) Analysis of the role of LinA and LinB in biodegradation of _-hexachlorocyclohexane. Environ Microbiol 9:2331–2340
Article
PubMed
CAS
Google Scholar
Wu BZ, Chen G, Yak H, Liao W, Chiu K, Peng SM (2016) Degradation of lindane and hexachlorobenzene in supercritical carbon dioxide using palladium nanoparticles stabilized in microcellular high-density polyethylene. Chemosphere 152:345–352. https://doi.org/10.1016/j.chemosphere.2016.02.123
Article
PubMed
CAS
Google Scholar
Yamamoto SS, Otsuka Y, Murakami M, Senoo K (2009) Genetic diversity of gamma-hexachlorocyclohexane-degrading sphingomonads isolated from a single experimental field. Lett Appl Microbiol 49:472–477
Article
PubMed
CAS
Google Scholar
Yang C, Yu H, Jiang H, Qiao C, Liu R (2016) An engineered microorganism can simultaneously detoxify cadmium, chlorpyrifos, and γ-hexachlorocyclohexane. J Basic Microbiol 56(7):820–826. https://doi.org/10.1002/jobm.201500559
Article
PubMed
CAS
Google Scholar
Yang J, Shen F, Qiu M, Qi X (2017) Catalytic dehydrochlorination of lindane by nitrogen-containing multiwalled carbon nanotubes (N-MWCNTs). Sci Total Environ 621:1445–1452. https://doi.org/10.1016/j.scitotenv.2017.10.084
Article
PubMed
CAS
Google Scholar
Yule WN, Chiba M, Morely HV (1967) Fate of insecticide residues. Decomposition of lindane in soil. J Agric Food Chem 15:1000–1004
Article
CAS
Google Scholar
Zaprasis A, Liu YJ, Liu SJ, Drake HL, Horn MA (2010) Abundance of novel and diverse tfdA-like genes, encoding putative phenoxyalkanoic acid herbicide-degrading dioxygenases, in soil. Appl Environ Microbiol 76(1):119–128
Article
PubMed
CAS
Google Scholar
Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332
Article
CAS
Google Scholar
Zhao D (2008) Destruction and lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effect of catalyst and stabilizer. Chemosphere 70:418–425
Article
PubMed
CAS
Google Scholar
Zhu Y, Liu H, Xi Z, Cheng H, Xu X (2005) Organochlorine pesticides (DDTs and HCHs) in soils from the outskirts of Beijing, China. Chemosphere 60:770–778
Article
PubMed
CAS
Google Scholar
Zinovyev SS, Shinkova NA, Perosa A, Tundo P (2004) Dechlorination of lindane in the multiphase catalytic reduction system with Pd/C, Pt/C and Raney-Ni. Appl Catal B 47:27–36
Article
CAS
Google Scholar