Abe F, Hiraki T (2009) Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiae. Biochim Biophys Acta Biomembr 1788:743–752
CAS
Google Scholar
Adeyo O, Horn PJ, Lee SK, Binns DD, Chandrahas A, Chapman KD, Goodman JM (2011) The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J Cell Biol 192:1043–1055
CAS
PubMed
PubMed Central
Google Scholar
Alvarez-Vasquez F, Riezman H, Hannun YA, Voit EO (2011) Mathematical modeling and validation of the ergosterol pathway in Saccharomyces cerevisiae. PLoS ONE 6:e28344
CAS
PubMed
PubMed Central
Google Scholar
Arendt P, Miettinen K, Pollier J, De Rycke R, Callewaert N, Goossens A (2017) An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids. Metab Eng 40:165–175
CAS
PubMed
Google Scholar
ArthingtonSkaggs BA, Crowell DN, Yang H, Sturley SL, Bard M (1996) Positive and negative regulation of a sterol biosynthetic gene (ERG3) in the post-squalene portion of the yeast ergosterol pathway. FEBS Lett 392:161–165
CAS
Google Scholar
Auchus R, Miller W (2015) P450 enzymes in steroid processing. In: de Montellano OP (ed) Cytochrome P450, 4th edn. Springer, Cham
Google Scholar
Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD, Millán C, Park H, Adams C, Glassman CR, DeGiovanni A, Pereira JH, Rodrigues AV, Dijk AAV, Ebrecht AC, Opperman DJ, Sagmeister T, Buhlheller C, Pavkov-Keller T, Rathinaswamy MK, Dalwadi U, Yip CK, Burke JE, Garcia KC, Grishin NV, Adams PD, Read RJ, Baker D (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–876
CAS
PubMed
PubMed Central
Google Scholar
Bikle DD (2014) Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 21:319–329
CAS
PubMed
PubMed Central
Google Scholar
Campbell K, Xia JY, Nielsen J (2017) The impact of systems biology on bioprocessing. Trends Biotechnol 35:1156–1168
CAS
PubMed
Google Scholar
Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J (2013) Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 15:48–54
CAS
PubMed
Google Scholar
Cheng J, Chen J, Liu X, Li X, Zhang W, Dai Z, Lu L, Zhou X, Cai J, Zhang X, Jiang H, Ma Y (2021) The origin and evolution of the diosgenin biosynthetic pathway in yam. Plant Commun 2:100079
PubMed
Google Scholar
Choudhary V, Schneiter R (2020) Lipid droplet biogenesis from specialized ER subdomains. Microb Cell 7:218–221
CAS
PubMed
PubMed Central
Google Scholar
Choudhary V, El Atab O, Mizzon G, Prinz WA, Schneiter R (2020) Seipin and Nem1 establish discrete ER subdomains to initiate yeast lipid droplet biogenesis. J Cell Biol 219:e201910177
CAS
PubMed
PubMed Central
Google Scholar
Christ B, Xu C, Xu M, Li FS, Wada N, Mitchell AJ, Han XL, Wen ML, Fujita M, Weng JK (2019) Repeated evolution of cytochrome P450-mediated spiroketal steroid biosynthesis in plants. Nat Commun 10:3206
PubMed
PubMed Central
Google Scholar
Davies BSJ, Rine J (2006) A role for sterol levels in oxygen sensing in Saccharomyces cerevisiae. Genetics 174:191–201
CAS
PubMed
PubMed Central
Google Scholar
Davies BSJ, Wang HS, Rine J (2005) Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae: similar activation/regulatory domains but different response mechanisms. Mol Cell Biol 25:7375–7385
CAS
PubMed
PubMed Central
Google Scholar
Dey P, Kundu A, Chakraborty HJ, Kar B, Choi WS, Lee BM, Bhakta T, Atanasov AG, Kim HS (2019) Therapeutic value of steroidal alkaloids in cancer: current trends and future perspectives. Int J Cancer 145:1731–1744
CAS
PubMed
PubMed Central
Google Scholar
Dong H, Chen S, Zhu JX, Gao K, Zha WL, Lin PC, Zi JC (2020) Enhance production of diterpenoids in yeast by overexpression of the fused enzyme of ERG20 and its mutant mERG20. J Biotechnol 307:29–34
CAS
PubMed
Google Scholar
Du HX, Xiao WH, Wang Y, Zhou X, Zhang Y, Liu D, Yuan YJ (2016) Engineering Yarrowia lipolytica for campesterol overproduction. PLoS ONE 11:e0146773
PubMed
PubMed Central
Google Scholar
Duport C, Spagnoli R, Degryse E, Pompon D (1998) Self-sufficient biosynthesis of pregnenolone and progesterone in engineered yeast. Nat Biotechnol 16:186–189
CAS
PubMed
Google Scholar
Duport C, Schoepp B, Chatelain E, Spagnoli R, Dumas B, Pompon D (2003) Critical role of the plasma membrane for expression of mammalian mitochondrial side chain cleavage activity in yeast. Eur J Biochem 270:1502–1514
CAS
PubMed
Google Scholar
Espenshade PJ, Hughes AL (2007) Regulation of sterol synthesis in eukaryotes. Annu Rev Genet 41:401–427
CAS
PubMed
Google Scholar
Fei WH, Shui GH, Gaeta B, Du XM, Kuerschner L, Li P, Brown AJ, Wenk MR, Parton RG, Yang HY (2008) Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 180:473–482
CAS
PubMed
PubMed Central
Google Scholar
Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS (2003) Microbial conversion of steroid compounds: recent developments. Enzyme Microb Tech 32:688–705
CAS
Google Scholar
Fernandez-Cabezon L, Galan B, Garcia JL (2018) New insights on steroid biotechnology. Front Microbiol 9:958
PubMed
PubMed Central
Google Scholar
Gardner RG, Shan H, Matsuda SPT, Hampton RY (2001) An oxysterol-derived positive signal for 3-hydroxy-3-methylglutaryl-CoA reductase degradation in yeast. J Biol Chem 276:8681–8694
CAS
PubMed
Google Scholar
Guo XJ, Xiao WH, Wang Y, Yao MD, Zeng BX, Liu H, Zhao GR, Yuan YJ (2018) Metabolic engineering of Saccharomyces cerevisiae for 7-dehydrocholesterol overproduction. Biotechnol Biofuels 11:192
PubMed
PubMed Central
Google Scholar
Hans-Peter H, Leber R, Martin L, Corinna O, Barbara P, Harald P, Birgit P (2021) Production of sterols in modified yeast. US patent 0,180,103, 17 Jun 2021
He XP, Zhang BR, Tan HR (2003) Overexpression of a sterol C-24(28) reductase increases ergosterol production in Saccharomyces cerevisiae. Biotechnol Lett 25:773–778
CAS
PubMed
Google Scholar
He XP, Guo XN, Liu N, Zhang BR (2007) Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae. Appl Microbiol Biot 75:55–60
CAS
Google Scholar
Heese-Peck A, Pichler H, Zanolari B, Watanabe R, Daum G, Riezman H (2002) Multiple functions of sterols in yeast endocytosis. Mol Biol Cell 13:2664–2680
CAS
PubMed
PubMed Central
Google Scholar
Hirz M, Richter G, Leitner E, Wriessnegger T, Pichler H (2013) A novel cholesterol-producing Pichia pastoris strain is an ideal host for functional expression of human Na, K-ATPase alpha 3 beta 1 isoform. Appl Microbiol Biot 97:9465–9478
CAS
Google Scholar
Hong J, Park SH, Kim S, Kim SW, Hahn JS (2019) Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production. Appl Microbiol Biot 103:211–223
CAS
Google Scholar
Hu ZH, He B, Ma L, Sun YL, Niu YL, Zeng B (2017) Recent advances in ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae. Indian J Microbiol 57:270–277
CAS
PubMed
PubMed Central
Google Scholar
Huang HP, Gao SL, Chen LL, Jiao XK (2008) In vitro induction and identification of autotetraploids of Dioscorea zingiberensis. In Vitro Cell Dev-Pl 44:448–455
Google Scholar
Jacquier N, Schneiter R (2012) Mechanisms of sterol uptake and transport in yeast. J Steroid Biochem 129:70–78
CAS
Google Scholar
Jandrositz A, Turnowsky F, Hogenauer G (1991) The gene encoding squalene epoxidase from Saccharomyces Cerevisiae: cloning and characterization. Gene 107:155–160
CAS
PubMed
Google Scholar
Jensen-Pergakes K, Guo ZM, Giattina M, Sturley SL, Bard M (2001) Transcriptional regulation of the two sterol esterification genes in the yeast Saccharomyces cerevisiae. J Bacteriol 183:4950–4957
CAS
PubMed
PubMed Central
Google Scholar
Jiang LH, Huang L, Cai J, Xu ZN, Lian JZ (2021) Functional expression of eukaryotic cytochrome P450s in yeast. Biotechnol Bioeng 118:1050–1065
CAS
PubMed
Google Scholar
Johnston EJ, Moses T, Rosser SJ (2020) The wide-ranging phenotypes of ergosterol biosynthesis mutants, and implications for microbial cell factories. Yeast 37:27–44
CAS
PubMed
Google Scholar
Jorda T, Puig S (2020) Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. Genes 11:795
CAS
PubMed Central
Google Scholar
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589
CAS
PubMed
PubMed Central
Google Scholar
Kim JE, Jang IS, Son SH, Ko YJ, Cho BK, Kim SC, Lee JY (2019) Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway. Metab Eng 56:50–59
CAS
PubMed
Google Scholar
Kim GB, Kim WJ, Kim HU, Lee SY (2020) Machine learning applications in systems metabolic engineering. Curr Opin Biotech 64:1–9
CAS
PubMed
Google Scholar
King ZA, Feist AM (2014) Optimal cofactor swapping can increase the theoretical yield for chemical production in Escherichia coli and Saccharomyces cerevisiae. Metab Eng 24:117–128
CAS
PubMed
Google Scholar
Klinkenberg LG, Mennella TA, Luetkenhaus K, Zitomer RS (2005) Combinatorial repression of the hypoxic genes of Saccharomyces cerevisiae by DNA binding proteins Rox1 and Mot3. Eukaryot Cell 4:649–660
CAS
PubMed
PubMed Central
Google Scholar
Koffel R, Tiwari R, Falquet L, Schneiter R (2005) The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis. Mol Cell Biol 25:1655–1668
PubMed
PubMed Central
Google Scholar
Kohlwein SD, Veenhuis M, van der Klei IJ (2013) Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat-store ‘em up or burn ‘em down. Genetics 193:1–50
CAS
PubMed
PubMed Central
Google Scholar
Kohut P, Wustner D, Hronska L, Kuchler K, Hapala I, Valachovic M (2011) The role of ABC proteins Aus1p and Pdr11p in the uptake of external sterols in yeast: dehydroergosterol fluorescence study. Biochem Bioph Res Co 404:233–238
CAS
Google Scholar
Kovganko NV, Ananich SK (1999) The chemical synthesis of sterols: latest advances. Chem Nat Compd 35:229–259
CAS
Google Scholar
Lang C, Veen M (2006) Preparation of 7-dehydrocholesterol and/or the biosynthetic intermediates and/or secondary products thereof in transgenic organisms. US Patent 0,240,508, 26 Oct 2006
Leber R, Landl K, Zinser E, Ahorn H, Spok A, Kohlwein SD, Turnowsky F, Daum G (1998) Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. Mol Biol Cell 9:375–386
CAS
PubMed
PubMed Central
Google Scholar
Lian J, Si T, Nair NU, Zhao H (2014) Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng 24:139–149
CAS
PubMed
Google Scholar
Liu GD, Chen Y, Faergeman NJ, Nielsen J (2017) Elimination of the last reactions in ergosterol biosynthesis alters the resistance of Saccharomyces cerevisiae to multiple stresses. FEMS Yeast Res 17:fox063
Google Scholar
Liu JF, Xia JJ, Nie KL, Wang F, Deng L (2019) Outline of the biosynthesis and regulation of ergosterol in yeast. World J Microb Biot 35:98
Google Scholar
Liu GS, Li T, Zhou W, Jiang M, Tao XY, Liu M, Zhao M, Ren YH, Gao B, Wang FQ, Wei DZ (2020) The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction. Metab Eng 57:151–161
PubMed
Google Scholar
Liu M, Lin YC, Guo JJ, Du MM, Tao XY, Gao B, Zhao M, Ma YS, Wang FQ, Wei DZ (2021) High-level production of sesquiterpene patchoulol in Saccharomyces cerevisiae. Acs Synth Biol 10:158–172
PubMed
Google Scholar
Luo YS, Nicaud JM, Van Veldhoven PP, Chardot T (2002) The acyl-CoA oxidases from the yeast Yarrowia lipolytica: characterization of Aox2p. Arch Biochem Biophys 407:32–38
CAS
PubMed
Google Scholar
Ma BX, Ke X, Tang XL, Zheng RC, Zheng YG (2018) Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3 beta-ol accumulation by metabolic engineering. World J Microb Biot 34(4):55
Google Scholar
Ma T, Shi B, Ye ZL, Li XW, Liu M, Chen Y, Xia J, Nielsen J, Deng ZX, Liu TG (2019) Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab Eng 52:134–142
CAS
PubMed
Google Scholar
Mlickova K, Roux E, Athenstaedt K, d’Andrea S, Daum G, Chardot T, Nicaud JM (2004) Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl Environ Microb 70:3918–3924
CAS
Google Scholar
Montanes FM, Pascual-Ahuir A, Proft M (2011) Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and Rox1 transcription factors. Mol Microbiol 79:1008–1023
CAS
PubMed
Google Scholar
Nemoto H, Nagai M, Fukumoto K, Kametani T (1986) A stereoselective total synthesis of 11-oxoprogesterone, a precursor to the corticosteroids, via an intramolecular cycloaddition reaction. J Chem Soc Perkin Trans 1:1621–1625
Google Scholar
Nohturfft A, Zhang SC (2009) Coordination of lipid metabolism in membrane biogenesis. Annu Rev Cell Dev Bi 25:539–566
CAS
Google Scholar
Ohta T, Zhang HY, Torihara Y, Furukawa I (1997) Improved synthetic route to dexamethasone acetate from tigogenin. Org Process Res Dev 1:420–424
CAS
Google Scholar
Palermo LM, Leak FW, Tove S, Parks LW (1997) Assessment of the essentiality of ERG genes late in ergosterol biosynthesis in Saccharomyces cerevisiae. Curr Genet 32:93–99
CAS
PubMed
Google Scholar
Paramasivan K, Mutturi S (2017a) Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae. Crit Rev Biotechnol 37:974–989
CAS
PubMed
Google Scholar
Paramasivan K, Mutturi S (2017b) Regeneration of NADPH coupled with HMG-CoA reductase activity increases squalene synthesis in Saccharomyces cerevisiae. J Agr Food Chem 65:8162–8170
CAS
Google Scholar
Park Y, Han GS, Mileykovskaya E, Garrett TA, Carman GM (2015) Altered lipid synthesis by lack of yeast Pah1 phosphatidate phosphatase reduces chronological life span. J Biol Chem 290:25382–25394
CAS
PubMed
PubMed Central
Google Scholar
Ploier B, Korber M, Schmidt C, Koch B, Leitner E, Daum G (2015) Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae. BBA Mol Cell Biol L 1851:977–986
CAS
Google Scholar
Polakowski T, Stahl U, Lang C (1998) Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biot 49:66–71
CAS
Google Scholar
Polakowski T, Bastl R, Stahl U, Lang C (1999) Enhanced sterol-acyl transferase activity promotes sterol accumulation in Saccharomyces cerevisiae. Appl Microbiol Biot 53:30–35
CAS
Google Scholar
Qian YD, Tan SY, Dong GR, Niu YJ, Hu CY, Meng YH (2020) Increased campesterol synthesis by improving lipid content in engineered Yarrowia lipolytica. Appl Microbiol Biot 104:7165–7175
CAS
Google Scholar
Quon E, Sere YY, Chauhan N, Johansen J, Sullivan DP, Dittman JS, Rice WJ, Chan RB, Di Paolo G, Beh CT, Menon AK (2018) Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation. Plos Biol 16:e2003864
PubMed
PubMed Central
Google Scholar
Rajakumari S, Grillitsch K, Daum G (2008) Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res 47:157–171
CAS
PubMed
Google Scholar
Saint-Prix F, Bonquist L, Dequin S (2004) Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP(+)-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. Microbiol Sgm 150:2209–2220
CAS
Google Scholar
Sambyal K, Singh RV (2020) Production aspects of testosterone by microbial biotransformation and future prospects. Steroids 159:108651
CAS
PubMed
Google Scholar
Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemoto N (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774
CAS
PubMed
PubMed Central
Google Scholar
Schmidt C, Athenstaedt K, Koch B, Ploier B, Korber M, Zellnig G, Daum G (2014) Defects in triacylglycerol lipolysis affect synthesis of triacylglycerols and steryl esters in the yeast. BBA Mol Cell Biol L 1841:1393–1402
CAS
Google Scholar
Shakoury-Elizeh M, Protchenko O, Berger A, Cox J, Gable K, Dunn TM, Prinz WA, Bard M, Philpott CC (2010) Metabolic response to iron deficiency in Saccharomyces cerevisiae. J Biol Chem 285:14823–14833
CAS
PubMed
PubMed Central
Google Scholar
Shin GH, Veen M, Stahl U, Lang C (2012) Overexpression of genes of the fatty acid biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. Yeast 29:371–383
CAS
PubMed
Google Scholar
Sorger D, Daum G (2003) Triacylglycerol biosynthesis in yeast. Appl Microbiol Biot 61:289–299
CAS
Google Scholar
Souza CM, Schwabe TM, Pichler H, Ploier B, Leitner E, Guan XL, Wenk MR, Riezman I, Riezman H (2011) A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance. Metab Eng 13:555–569
CAS
PubMed
Google Scholar
Su W, Xiao WH, Wang Y, Liu D, Zhou X, Yuan YJ (2015) Alleviating redox imbalance enhances 7-dehydrocholesterol production in engineered Saccharomyces cerevisiae. PLoS ONE 10:e0130840
PubMed
PubMed Central
Google Scholar
Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P, Cauet G, Degryse E, Balbuena D, Winter J, Achstetter T, Spagnoli R, Pompon D, Dumas B (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21:143–149
CAS
PubMed
Google Scholar
Takahashi H, McCaffery JM, Irizarry RA, Boeke JD (2006) Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell 23:207–217
CAS
PubMed
Google Scholar
Tan TW, Zhang M, Gao H (2003) Ergosterol production by fed-batch fermentation of Saccharomyces cerevisiae. Enzyme Microb Tech 33:366–370
CAS
Google Scholar
Tang XL, Feng HX, Chen WN (2013) Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae. Metab Eng 16:95–102
CAS
PubMed
Google Scholar
Tantuco K, Deretey E, Csizmadia IG (2000) Stabilities for the eight isomeric forms of the steroid skeleton (perhydrocyclopentanophenanthrene). J Mol Struc-Theochem 503:97–111
CAS
Google Scholar
Tiwari R, Koffel R, Schneiter R (2007) An acetylation/deacetylation cycle controls the export of sterols and steroids from S. cerevisiae. EMBO J 26:5109–5119
CAS
PubMed
PubMed Central
Google Scholar
Tsukagoshi Y, Suzuki H, Seki H, Muranaka T, Ohyama K, Fujimoto Y (2016) Ajuga 24-sterol reductase catalyzes the direct reductive conversion of 24-methylenecholesterol to campesterol. J Biol Chem 291:8189–8198
CAS
PubMed
PubMed Central
Google Scholar
Veen M, Stahl U, Lang C (2003) Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. FEMS Yeast Res 4:87–95
CAS
PubMed
Google Scholar
Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. P Natl Acad Sci USA 104:2402–2407
CAS
Google Scholar
Vik A, Rine J (2001) Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 21:6395–6405
CAS
PubMed
PubMed Central
Google Scholar
Wagner A, Grillitsch K, Leitner E, Daum G (2009) Mobilization of steryl esters from lipid particles of the yeast Saccharomyces cerevisiae. BBA Mol Cell Biol L 1791:118–124
CAS
Google Scholar
Wang FQ, Li B, Wang W, Zhang CG, Wei DZ (2007) Biotransformation of diosgenin to nuatigenin-type steroid by a newly isolated strain, Streptomyces virginiae IBL-14. Appl Microbiol Biot 77:771–777
CAS
Google Scholar
Wang SQ, Wang T, Liu JF, Deng L, Wang F (2018) Overexpression of Ecm22 improves ergosterol biosynthesis in Saccharomyces cerevisiae. Lett Appl Microbiol 67:484–490
CAS
PubMed
Google Scholar
Wei LJ, Kwak S, Liu JJ, Lane S, Hua Q, Kweon DH, Jin YS (2018) Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae. Biotechnol Bioeng 115:1793–1800
CAS
PubMed
Google Scholar
Wriessnegger T, Pichler H (2013) Yeast metabolic engineering-targeting sterol metabolism and terpenoid formation. Prog Lipid Res 52:277–293
CAS
PubMed
Google Scholar
Xu SH, Li YR (2020) Yeast as a promising heterologous host for steroid bioproduction. J J Ind Microbiol Biot 47:829–843
CAS
Google Scholar
Xu SH, Chen C, Li YR (2020) Engineering of phytosterol-producing yeast platforms for functional reconstitution of downstream biosynthetic pathways. Acs Synth Biol 9:3157–3170
CAS
PubMed
Google Scholar
Yang HY, Bard M, Bruner DA, Gleeson A, Deckelbaum RJ, Aljinovic G, Pohl TM, Rothstein R, Sturley SL (1996) Sterol esterification in yeast: a two-gene process. Science 272:1353–1356
CAS
PubMed
Google Scholar
Yin Y, Gao LH, Zhang XN, Gao W (2018) A cytochrome P450 monooxygenase responsible for the C-22 hydroxylation step in the Paris polyphylla steroidal saponin biosynthesis pathway. Phytochemistry 156:116–123
CAS
PubMed
Google Scholar
Zhang S, Sakuradani E, Shimizu S (2007) Identification of a sterol Δ7 reductase gene involved in desmosterol biosynthesis in Mortierella alpina 1S–4. Appl Environ Microb 73:1736–1741
CAS
Google Scholar
Zhang Y, Wang Y, Yao MD, Liu H, Zhou X, Xiao WH, Yuan YJ (2017) Improved campesterol production in engineered Yarrowia lipolytica strains. Biotechnol Lett 39:1033–1039
CAS
PubMed
Google Scholar
Zhang RS, Zhang Y, Wang Y, Yao MD, Zhang JL, Liu H, Zhou X, Xiao WH, Yuan YJ (2019) Pregnenolone overproduction in Yarrowia lipolytica by integrative components pairing of the cytochrome P450scc system. Acs Synth Biol 8:2666–2678
CAS
PubMed
Google Scholar
Zhao X, Shi F, Zhan W (2015) Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant Saccharomyces cerevisiae. Lett Appl Microbiol 61:354–360
CAS
PubMed
Google Scholar
Zhu ZW, Ding YF, Gong ZW, Yang L, Zhang SF, Zhang CY, Lin XP, Shen HW, Zou HF, Xie ZS, Yang FQ, Zhao XD, Liu PS, Zhao ZBK (2015) Dynamics of the lipid droplet proteome of the oleaginous yeast Rhodosporidium toruloides. Eukaryot Cell 14:252–264
CAS
PubMed
PubMed Central
Google Scholar
Zinser E, Paltauf F, Daum G (1993) Sterol composition of yeast organelle membranes and subcellular-distribution of enzymes involved in sterol-metabolism. J Bacteriol 175:2853–2858
CAS
PubMed
PubMed Central
Google Scholar