Aguilera Y, Dueñas M, Estrella I et al (2010) Evaluation of phenolic profile and antioxidant properties of pardina lentil as affected by industrial dehydration. J Agric Food Chem 58:10101–10108. https://doi.org/10.1021/jf102222t
Article
CAS
PubMed
Google Scholar
Aidoo KE, Hendry R, Wood BJB (1981) Estimation of fungal growth in a solid state fermentation system. Eur J Appl Microbiol Biotechnol 12:6–9
Article
CAS
Google Scholar
AOAC (2000) Official methods of analysis of AOAC International. Association of Official Analysis Chemists International, Arlington
Google Scholar
Asensio-Grau A, Calvo-Lerma J, Heredia A, Andrés A (2020) Enhancing the nutritional profile and digestibility of lentil flour by solid state fermentation with Pleurotus ostreatus. Food Funct 11:7905–7912. https://doi.org/10.1039/d0fo01527j
Article
CAS
PubMed
Google Scholar
Atlı B, Yamaç M, Yıldız Z, Şőlener M (2019) Solid state fermentation optimization of Pleurotus ostreatus for lovastatin production. Pharm Chem J 53:858–864. https://doi.org/10.1007/s11094-019-02090-0
Article
CAS
Google Scholar
Becerra-Tomás N, Papandreou C, Salas-Salvadó J (2019) Legume consumption and cardiometabolic health. Adv Nutr 10:S437–S450. https://doi.org/10.1093/advances/nmz003
Article
PubMed
PubMed Central
Google Scholar
Bei Q, Liu Y, Wang L et al (2017) Improving free, conjugated, and bound phenolic fractions in fermented oats (Avena sativa L.) with Monascus anka and their antioxidant activity. J Funct Foods 32:185–194. https://doi.org/10.1016/J.JFF.2017.02.028
Article
CAS
Google Scholar
Bohn T, Davidsson L, Walczyk T, Hurrell RF (2004) Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. Am J Clin Nutr 79:418–423
Article
CAS
Google Scholar
Bouchenak M, Lamri-Senhadji M (2013) Nutritional quality of legumes, and their role in cardiometabolic risk prevention: a review. J Med Food 16:185–198. https://doi.org/10.1089/JMF.2011.0238
Article
CAS
PubMed
Google Scholar
Brejnholt SM, Dionisio G, Glitsoe V et al (2011) The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin. J Sci Food Agric 91:1398–1405. https://doi.org/10.1002/jsfa.4324
Article
CAS
PubMed
Google Scholar
Briante R, Febbraio F, Nucci R (2003) Antioxidant properties of low molecular weight phenols present in the Mediterranean diet. J Agric Food Chem 51:6975–6981. https://doi.org/10.1021/jf034471r
Article
CAS
PubMed
Google Scholar
Bryngelsson S, Dimberg LH, Kamal-Eldin A (2002) Effects of commercial processing on levels of antioxidants in oats (Avena sativa L.). J Agric Food Chem 50:1890–1896. https://doi.org/10.1021/jf011222z
Article
CAS
PubMed
Google Scholar
Cai S, Wang O, Wu W et al (2012) Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolics content (TPC), flavonoids, and antioxidant activities of subfractions from oats (Avena sativa L.). J Agric Food Chem 60:507–513. https://doi.org/10.1021/jf204163a
Article
CAS
PubMed
Google Scholar
Castro-Alba V, Lazarte CE, Perez-Rea D et al (2019) Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. J Sci Food Agric 99:5239–5248. https://doi.org/10.1002/jsfa.9793
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang CH, Lin HY, Chang CY, Liu YC (2006) Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J Food Eng 77:478–485. https://doi.org/10.1016/J.JFOODENG.2005.06.061
Article
CAS
Google Scholar
Clemente A, Jimenez-Lopez JC (2020) Introduction to the special issue: legumes as food ingredient: characterization, processing, and applications. Foods 9:1525. https://doi.org/10.3390/FOODS9111525
Article
CAS
PubMed Central
Google Scholar
Couto SR, Sanromán MÁ (2006) Application of solid-state fermentation to food industry—a review. J Food Eng 76:291–302. https://doi.org/10.1016/J.JFOODENG.2005.05.022
Article
CAS
Google Scholar
Devi J, Sanwal SK, Koley TK et al (2019) Variations in the total phenolics and antioxidant activities among garden pea (Pisum sativum L.) genotypes differing for maturity duration, seed and flower traits and their association with the yield. Sci Hortic 244:141–150. https://doi.org/10.1016/J.SCIENTA.2018.09.048
Article
CAS
Google Scholar
Dhull SB, Punia S, Kidwai MK et al (2020) Solid-state fermentation of lentil (Lens culinaris L.) with Aspergillus awamori: effect on phenolic compounds, mineral content, and their bioavailability. Legume Sci 2:e37. https://doi.org/10.1002/LEG3.37
Article
CAS
Google Scholar
Ergun SO, Urek RO (2017) Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus. Ann Agrarian Sci 15:273–277. https://doi.org/10.1016/J.AASCI.2017.04.003
Article
Google Scholar
Espinosa-Páez E, Alanis-Guzmán MG, Hernández-Luna CE et al (2017) Increasing antioxidant activity and protein digestibility in Phaseolus vulgaris and Avena sativa by fermentation with the Pleurotus ostreatus Fungus. Molecules 22:2275. https://doi.org/10.3390/MOLECULES22122275
Article
PubMed Central
Google Scholar
Febles CI, Arias A, Hardisson A et al (2002) Phytic acid level in wheat flours. J Cereal Sci 36:19–23. https://doi.org/10.1006/JCRS.2001.0441
Article
CAS
Google Scholar
Fukumoto LR, Mazza G (2000) Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem 48:3597–3604. https://doi.org/10.1021/jf000220w
Article
CAS
PubMed
Google Scholar
Gallego M, Arnal M, Barat JM, Talens P (2020) Effect of cooking on protein digestion and antioxidant activity of different legume pastes. Foods 10:47. https://doi.org/10.3390/FOODS10010047
Article
PubMed Central
Google Scholar
Garrido-Galand S, Asensio-Grau A, Calvo-Lerma J et al (2021) The potential of fermentation on nutritional and technological improvement of cereal and legume flours: a review. Food Res Int 145:110398. https://doi.org/10.1016/J.FOODRES.2021.110398
Article
CAS
PubMed
Google Scholar
Gebru YA, Sbhatu DB (2020) Effects of fungi-mediated solid-state fermentation on phenolic contents and antioxidant activity of brown and white teff (Eragrostis tef (Zucc.) Trotter) grains. J Food Qual. https://doi.org/10.1155/2020/8819555
Article
Google Scholar
Gupta S, Lee JJL, Chen WN (2018) Analysis of improved nutritional composition of potential functional food (Okara) after probiotic solid-state fermentation. J Agric Food Chem 66:5373–5381. https://doi.org/10.1021/acs.jafc.8b00971
Article
CAS
PubMed
Google Scholar
Guttieri MJ, Peterson KM, Souza EJ (2006) Milling and baking quality of low phytic acid wheat. Crop Sci 46:2403–2408. https://doi.org/10.2135/cropsci2006.03.0137
Article
CAS
Google Scholar
Haug W, Lantzsch H-J (1983) Sensitive method for the rapid determination of phytate in cereals and cereal products. J Sci Food Agric 34:1423–1426. https://doi.org/10.1002/JSFA.2740341217
Article
CAS
Google Scholar
Hídvégi M, Lásztity R (2002) Phytic acid content of cereals and legumes and interaction with proteins. Periodica Polytech Chem Eng 46:59–64
Google Scholar
Hurrell RF, Reddy MB, Juillerat M-A, Cook JD (2003) Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am J Clin Nutr 77:1213–1219
Article
CAS
Google Scholar
Karimi S, Ferreira JA, Taherzadeh MJ (2021) The application of fungal biomass as feed. In: Encyclopedia of mycology. Elsevier, pp 601–612
Khazaei H, Subedi M, Nickerson M et al (2019) Seed protein of lentils: current status, progress, and food applications. Foods 8:391. https://doi.org/10.3390/foods8090391
Article
CAS
PubMed Central
Google Scholar
Liang J, Han BZ, Nout MJR, Hamer RJ (2008) Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chem 110:821–828. https://doi.org/10.1016/J.FOODCHEM.2008.02.064
Article
CAS
PubMed
Google Scholar
Limón RI, Peñas E, Torino MI et al (2015) Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chem 172:343–352. https://doi.org/10.1016/J.FOODCHEM.2014.09.084
Article
PubMed
Google Scholar
Liu X, Kokare C (2017) Microbial enzymes of use in industry. In: Brahmachari G, Demain AL, Adro JL (eds) Biotechnology of microbial enzymes. Elsevier Inc, Amsterdam, pp 267–298. https://doi.org/10.1016/B978-0-12-803725-6.00011-X
Chapter
Google Scholar
Madapathage Dona A (2011) Enhancing antioxidant activity and extractability of bioactive compounds of wheat bran using thermal treatments. University of Manitoba, Winnipeg
Google Scholar
Magro AEA, Silva LC, Rasera GB et al (2019) Solid-state fermentation as an efficient strategy for the biotransformation of lentils: enhancing their antioxidant and antidiabetic potentials. Bioresources and Bioprocessing 6:1–9. https://doi.org/10.1186/s40643-019-0273-5
Article
Google Scholar
Marathe SA, Rajalakshmi V, Jamdar SN, Sharma A (2011) Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Food Chem Toxicol 49:2005–2012. https://doi.org/10.1016/J.FCT.2011.04.039
Article
CAS
PubMed
Google Scholar
Michael HW, Bultosa G, Pant LM (2011) Nutritional contents of three edible oyster mushrooms grown on two substrates at Haramaya, Ethiopia, and sensory properties of boiled mushroom and mushroom sauce. Int J Food Sci Technol 46:732–738. https://doi.org/10.1111/j.1365-2621.2010.02543.x
Article
CAS
Google Scholar
Mora-Uzeta C, Cuevas-Rodríguez E, López-Cervantes J et al (2019) Improvement nutritional/antioxidant properties of underutilized legume tepary bean (Phaseolus acutifolius) by solid state fermentation. Agrociencia 53:987–1003
Google Scholar
Motta C, Castanheira I, Gonzales GB et al (2019) Impact of cooking methods and malting on amino acids content in amaranth, buckwheat and quinoa. J Food Compos Anal 76:58–65. https://doi.org/10.1016/J.JFCA.2018.10.001
Article
CAS
Google Scholar
Muñoz-Llandes C, Guzmán-Ortiz F, Román-Guitiérrez A, et al (2019) Effect of germination on antinutritional compounds of grains and seeds. Types Process Effects, pp 83–99
Muzquiz M, Varela A, Burbano C et al (2012) Bioactive compounds in legumes: pronutritive and antinutritive actions. Implications for nutrition and health. Phytochem Rev 11:227–244. https://doi.org/10.1007/s11101-012-9233-9
Article
CAS
Google Scholar
Nemecek T, von Richthofen JS, Dubois G et al (2008) Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron 28:380–393. https://doi.org/10.1016/J.EJA.2007.11.004
Article
Google Scholar
Nkhata SG, Ayua E, Kamau EH, Shingiro JB (2018) Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci Nutr 6:2446–2458. https://doi.org/10.1002/FSN3.846
Article
CAS
PubMed
PubMed Central
Google Scholar
Olukomaiya OO, Adiamo OQ, Fernando WC et al (2020) Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chem 315:126238. https://doi.org/10.1016/J.FOODCHEM.2020.126238
Article
CAS
PubMed
Google Scholar
Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84. https://doi.org/10.1016/S1369-703X(02)00121-3
Article
CAS
Google Scholar
Peng W, Tao Z, Ji Chun T (2010) Phytic acid contents of wheat flours from different mill streams. Agric Sci China 9:1684–1688. https://doi.org/10.1016/S1671-2927(09)60266-2
Article
CAS
Google Scholar
Raghavarao KSMS, Ranganathan TV, Karanth NG (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13:127–135. https://doi.org/10.1016/S1369-703X(02)00125-0
Article
CAS
Google Scholar
Rocchetti G, Miragoli F, Zacconi C et al (2019) Impact of cooking and fermentation by lactic acid bacteria on phenolic profile of quinoa and buckwheat seeds. Food Res Int 119:886–894. https://doi.org/10.1016/J.FOODRES.2018.10.073
Article
CAS
PubMed
Google Scholar
Rodrigues Da Luz JM, Dias Nunes M, Albino Paes S et al (2012) Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes. Braz J Microbiol 43:1508–1515
Article
CAS
Google Scholar
Romano A, Ferranti P (2019) Sustainable crops for food security: quinoa (Chenopodium quinoa Willd.). In: Encyclopedia of food security and sustainability, pp 399–402. https://doi.org/10.1016/B978-0-08-100596-5.22573-0
Samtiya M, Aluko RE, Dhewa T (2020) Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod Process Nutr 2:1–14. https://doi.org/10.1186/S43014-020-0020-5
Article
Google Scholar
Sánchez-Navarro V, Zornoza R, Faz Á, Fernández JA (2020) A comparative greenhouse gas emissions study of legume and non-legume crops grown using organic and conventional fertilizers. Sci Hortic 260:108902. https://doi.org/10.1016/J.SCIENTA.2019.108902
Article
Google Scholar
Şanlier N, Başar Gökcen B, Ceyhun Sezgin A (2019) Health benefits of fermented foods. Crit Rev Food Sci Nutr 59:506–527. https://doi.org/10.1080/10408398.2017.1383355
Article
CAS
PubMed
Google Scholar
Sarwar-Gilani G, Wu Xiao C, Cockell KA (2012) Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br J Nutr 108:S315–S332. https://doi.org/10.1017/S0007114512002371
Article
CAS
PubMed
Google Scholar
Schlemmer U, Frølich W, Prieto RM, Grases F (2009) Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 53:S330–S375. https://doi.org/10.1002/mnfr.200900099
Article
PubMed
Google Scholar
Shi L, Mu K, Arntfield SD, Nickerson MT (2017) Changes in levels of enzyme inhibitors during soaking and cooking for pulses available in Canada. J Food Sci Technol 54:1014–1022. https://doi.org/10.1007/S13197-017-2519-6/TABLES/4
Article
CAS
PubMed
PubMed Central
Google Scholar
Thaipong K, Boonprakob U, Crosby K et al (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675. https://doi.org/10.1016/J.JFCA.2006.01.003
Article
CAS
Google Scholar
Tomaselli Scotti C, Vergoignan C, Feron G, Durand A (2001) Glucosamine measurement as indirect method for biomass estimation of Cunninghamella elegans grown in solid state cultivation conditions. Biochem Eng J 7:1–5. https://doi.org/10.1016/S1369-703X(00)00090-5
Article
Google Scholar
Torino MI, Limón RI, Martínez-Villaluenga C et al (2013) Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem 136:1030–1037. https://doi.org/10.1016/J.FOODCHEM.2012.09.015
Article
CAS
PubMed
Google Scholar
Villaño D, Fernández-Pachón MS, Troncoso AM, García-Parrilla MC (2005) Comparison of antioxidant activity of wine phenolic compounds and metabolites in vitro. Anal Chim Acta 538:391–398. https://doi.org/10.1016/J.ACA.2005.02.016
Article
Google Scholar
Xiao Y, Xing G, Rui X et al (2014) Enhancement of the antioxidant capacity of chickpeas by solid state fermentation with Cordyceps militaris SN-18. J Funct Foods 10:210–222. https://doi.org/10.1016/J.JFF.2014.06.008
Article
CAS
Google Scholar
Xu L-N, Guo S, Zhang S (2018) Effects of solid-state fermentation with three higher fungi on the total phenol contents and antioxidant properties of diverse cereal grains. FEMS Microbiol Lett 365:fny163. https://doi.org/10.1093/femsle/fny163
Article
CAS
Google Scholar
Zhai FH, Wang Q, Han JR (2015) Nutritional components and antioxidant properties of seven kinds of cereals fermented by the basidiomycete Agaricus blazei. J Cereal Sci 65:202–208. https://doi.org/10.1016/J.JCS.2015.07.010
Article
CAS
Google Scholar