Adebayo EA, Martínez-Carrera D (2015) Oyster mushrooms (Pleurotus) are useful for utilizing lignocellulosic biomass. Afr J Biotechnol 14:52–67. https://doi.org/10.5897/AJB2014.14249
Article
Google Scholar
Akpinar M, Urek RO (2014) Extracellular ligninolytic enzymes production by Pleurotus eryngii on agroindustrial wastes. Prep Biochem Biotech 44:772–781. https://doi.org/10.1080/10826068.2013.867870
Article
CAS
Google Scholar
Alborés S, Pianzzola MJ, Soubes M, Cerdeiras MP (2006) Biodegradation of agroindustrial wastes by Pleurotus spp. for its use as ruminal feed. Electron J Biotechnol 9:215–220
Article
Google Scholar
Arora DS, Gill PK (2000) Laccase production by some white rot fungi under different nutritional conditions. Biores Technol 73:283–285. https://doi.org/10.1016/S0960-8524(99)00141-8
Article
CAS
Google Scholar
Bernfeld P (1955) Amylases, α and β. In: De Murray P (ed) Methods in enzymology. Deutcher Acad. Press INC, San Diego, pp 149–158
Chapter
Google Scholar
Bettin F, Montanari Q, Calloni R, Gaio TA, Silveira MM, Dillon AJ (2009) Production of laccases in submerged process by Pleurotus sajor-caju PS-2001 in relation to carbon and organic nitrogen sources, antifoams and Tween 80. J Ind Microbiol Biot 36:1–9. https://doi.org/10.1007/s10295-008-0463-1
Article
CAS
Google Scholar
Bhardwaj N, Kumar B, Agrawal K, Verma P (2021) Current perspective on production and applications of microbial cellulases: a review. Bioresour Bioprocess 8:95. https://doi.org/10.1186/s40643-021-00447-6
Article
Google Scholar
Bilal M, Asgher M, Iqbal HMN, Hu H (2017) Biotransformation of lignocellulosic materials into value-added products—a review. Int J Biol Macromol 98:447–458. https://doi.org/10.1016/j.ijbiomac.2017.01.133
Article
CAS
PubMed
Google Scholar
Bimestre TA, Mantovani JA, Canettieri EV, Tuna CE (2022) Hydrodynamic cavitation for lignocellulosic biomass pretreatment: a review of recent developments and future perspectives. Bioresour Bioprocess 9:7. https://doi.org/10.1186/s40643-022-00499-2
Article
Google Scholar
Ćilerdžić J, Stajić M, Vukojević J (2016a) Degradation of wheat straw and oak sawdust by Ganoderma applanatum. Int Biodeter Biodegr 114:39–44. https://doi.org/10.1016/j.ibiod.2016.05.024
Article
CAS
Google Scholar
Ćilerdžić J, Stajić M, Vukojević J (2016b) Activity of Mn-oxidizing peroxidases of Ganoderma lucidum depending on cultivation conditions. BioResources 11:95–104. https://doi.org/10.15376/biores.11.1.95-104
Article
CAS
Google Scholar
Ćilerdžić J, Galić M, Vukojević J, Brčeski I, Stajić M (2017) Potential of selected fungal species to degrade wheat straw, the most abundant plant raw material in Europe. BMC Plant Biol 17:75–81. https://doi.org/10.1186/s12870-017-1196-y
Article
CAS
Google Scholar
Ćilerdžić J, Galić M, Ivanović Ž, Brčeski I, Vukojević J, Stajić M (2018) Stimulation of wood degradation by Daedaleopsis confragosa and D. tricolor. App Biochem Biotech 187:1371–1383. https://doi.org/10.1007/s12010-018-2884-2
Article
CAS
Google Scholar
Collins PJ, Dobson A (1997) Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microb 63:3444–3450. https://doi.org/10.1128/aem.63.9.3444-3450.1997
Article
CAS
Google Scholar
Das N, Chakraborty TK, Mukherjee M (2001) Purification and characterization of a growth regulating laccase from Pleurotus florida. J Basic Microbiol 41:261–267
Article
CAS
Google Scholar
de Freitas EN, Bubna GA, Brugnari T, Kato CG, Nolli M, Rauen T, Muniz Moreira RFP, Peralta PA, Bracht A, de Souza CGM, Peralta PA (2017) Removal of bisphenol A by laccases from Pleurotus ostreatus and Pleurotus pulmonarius and evaluation of ecotoxicity of degradation products. Chem Eng J 330:1361–1369. https://doi.org/10.1016/j.cej.2017.08.051
Article
CAS
Google Scholar
Dong XQ, Yang JS, Zhu N, Wang ET, Yuan HL (2013) Sugarcane bagasse degradation and characterization of three white-rot fungi. Biores Technol 131:443–451. https://doi.org/10.1016/j.biortech.2012.12.182
Article
CAS
Google Scholar
Ekundayo FO, Ekundayo EA, Ayodele BB (2017) Comparative studies on glucanases and β-glucosidase activities of Pleurotus ostreatus and P. pulmonarius in solid state fermentation. Mycosphere 8:1051–1059. https://doi.org/10.5943/mycosphere/8/8/16
Article
Google Scholar
Elisashvili V, Penninckx M, Kachlishvili E, Tsiklauri N, Metreveli E, Kharziani T, Kvesitadze G (2008) Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and soil-state fermentation of lignocellulosic wastes of different composition. Biores Technol 99:457–462. https://doi.org/10.1016/j.biortech.2007.01.011
Article
CAS
Google Scholar
Fang W, Zhang P, Zhang X, Zhu X, van Lier JB, Spanjers H (2018) White rot fungi pretreatment to advance volatile fatty acid production from solid-state fermentation of solid digestate: efficiency and mechanisms. Energy 162:534–541. https://doi.org/10.1016/j.energy.2018.08.082
Article
CAS
Google Scholar
Fenice M, Giovannozzi Sermanni G, Federici F, D’Annibale A (2003) Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill waste water-based media. J Biotechnol 100:77–85. https://doi.org/10.1016/S0168-1656(02)00241-9
Article
CAS
PubMed
Google Scholar
Ghaffar SH, Fan M, McVicar B (2015) Bioengineering for utilization and bioconversion of straw biomass into bio-products. Ind Crop Prod 77:262–274. https://doi.org/10.1016/j.indcrop.2015.08.060
Article
CAS
Google Scholar
Goyal M, Soni G (2011) Production and characterization of cellulolytic enzymes by Pleurotus florida. Afr J Microbiol Res 5(10):1131–1136. https://doi.org/10.5897/AJMR10.192
Article
CAS
Google Scholar
Grujić M, Dojnov B, Potočnik I, Duduk B, Vujčić Z (2015) Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp. and Aspergillus niger in solid state fermentation. Int Biodeter Biodegr 104:290–298. https://doi.org/10.1016/j.ibiod.2015.04.029
Article
CAS
Google Scholar
Hammel EH (1997) Fungal degradation of lignin. In: Cadisah G, Giller K (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, pp 33–45
Google Scholar
Inácio FD, Ferreira RO, De Araujo CAV, Peralta RM, De Souza CGM (2015) Production of enzymes and biotransformation of orange waste by oyster mushroom, Pleurotus pulmonarius (Fr.) Quél. Adv Microbiol 5:1–8. https://doi.org/10.4236/aim.2015.51001
Article
Google Scholar
Jiang M, Ten Z, Ding S (2013) Decolorization of synthetic dyes by crude and purified laccases from Coprinus comatus grown under different cultures: the role of major isoenzyme in dyes decolorization. App Biochem Biotech 169:660–672. https://doi.org/10.1007/s12010-012-0031-z
Article
CAS
Google Scholar
Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Bior 1:119–134. https://doi.org/10.1002/bbb.4
Article
CAS
Google Scholar
Kirk TK, Obst JR (1988) Lignin determination. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology 161. Academic Press Inc., San Diego, pp 87–101
Google Scholar
Knežević A, Milovanović I, Stajić M, Lončar N, Brčeski I, Vukojević J, Ćilerdžić J (2013) Lignin degradation by selected fungal species. Biores Technol 138:117–123. https://doi.org/10.1016/j.biortech.2013.03.182
Article
CAS
Google Scholar
Knežević A, Stajić M, Vukojević J, Milovanović I (2014) The effect of trace elements on wheat straw degradation by Trametes gibbosa. Int Biodeter Biodegr 96:152–156. https://doi.org/10.1016/j.ibiod.2014.10.004
Article
CAS
Google Scholar
Knežević A, Stajić M, Jovanović VM, Kovačević V, Ćilerdžić J, Milovanović I, Vukojević J (2016) Induction of wheat straw delignification by Trametes species. Sci Rep 6:1–12. https://doi.org/10.1038/srep26529
Article
CAS
Google Scholar
Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Woitas-Wasilewski M, Cho NS, Hotrichter M, Rogalski J (1999) Biodegradation by white rot fungi. Fungal Genet Biol 27:175–185. https://doi.org/10.1006/fgbi.1999.1150
Article
CAS
PubMed
Google Scholar
Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol R 66(3):506–577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
Article
CAS
Google Scholar
Marques de Souza CG, Peralta RM (2003) Purification and characterization of the main laccase produced by the white-rot fungus Pleurotus pulmonarius on wheat bran solid state medium. J Basic Microb 43:278–286. https://doi.org/10.1002/jobm.200390031
Article
Google Scholar
Muñoz C, Guillen F, Martínez TA, Martínez JM (1997a) Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties and participation in activation of molecular oxygen and Mn2+ oxidation. Appl Environ Microb 63:2166–2174. https://doi.org/10.1128/aem.63.6.2166-2174.1997
Article
Google Scholar
Muñoz C, Guillen F, Martínez TA, Martínez JM (1997b) Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Curr Microbiol 34:1–5. https://doi.org/10.1007/s002849900134
Article
PubMed
Google Scholar
Mustafa AM, Poulsen TG, Sheng K (2016) Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl Energ 180:661–671. https://doi.org/10.1016/j.apenergy.2016.07.135
Article
CAS
Google Scholar
Palma C, Lloret L, Sepúlveda L, Contreras E (2016) Production of versatile peroxidase from Pleurotus eryngii by solid-state fermentation using agricultural residues and evaluation of its catalytic properties. Prep Biochem Biotech 46:200–207. https://doi.org/10.1080/10826068.2015.1084513
Article
CAS
Google Scholar
Palmieri G, Giardna P, Marzullo L, Desiderio B, Nitti B, Cannio R, Sannia G (1993) Stability and activity of phenol oxidase from lignolytic fungus Pleurotus ostreatus. Appl Microbiol Biot 39:632–636. https://doi.org/10.1007/bf00205066
Article
CAS
Google Scholar
Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G (1997) A novel white laccase from Pleurotus ostreatus. J Biol Chem 272:31301–31307. https://doi.org/10.1074/jbc.272.50.31301
Article
CAS
PubMed
Google Scholar
Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924. https://doi.org/10.1128/aem.66.3.920-924.2000
Article
CAS
PubMed
PubMed Central
Google Scholar
Paramjeet S, Manasa P, Korrapati N (2018) Biofuels: Production of fungal-mediated ligninolytic enzymes and the modes of bioprocesses utilizing agro-based residues. Biocatal Agric Biotechnol 14:57–71. https://doi.org/10.1016/j.bcab.2018.02.007
Article
Google Scholar
Piñeros-Castro Y, Velásquez-Lozano M (2014) Biodegradation kinetics of oil palm empty fruit bunches by white rot fungi. Int Biodeter Biodegr 91:24–28. https://doi.org/10.1016/j.ibiod.2014.03.009
Article
CAS
Google Scholar
Prasad RK, Chatterjee S, Mazumder PB, Gupta SK, Sharma S, Vairale MG, Datta S, Dwivedi SK, Gupta DK (2019) Bioethanol production from waste lignocelluloses: a review on microbial degradation potential. Chemosphere 231:588–606. https://doi.org/10.1016/j.chemosphere.2019.05.142
Article
CAS
PubMed
Google Scholar
Richard T (1996) The Effect of lignin on biodegradability. Cornell Waste Management Institute, Ithaca, pp 14853–15601
Google Scholar
Saha BC, Qureshi N, Gregory J, Kennedy GJ, Michael A, Cotta MA (2016) Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. Int Biodeter Biodegr 109:29–35. https://doi.org/10.1016/j.ibiod.2015.12.020
Article
CAS
Google Scholar
Salmones D, Mata G, Waliszewski KN (2005) Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation. Biores Technol 96:537–544. https://doi.org/10.1016/j.biortech.2004.06.019
Article
CAS
Google Scholar
Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001
Article
CAS
PubMed
Google Scholar
Sannia G, Giardina P, Luna M, Rossi M, Buonocore V (1986) Laccase from Pleurotus ostreatus. Biotechnol Lett 8:797–800
Article
CAS
Google Scholar
Sekan AS, Myronycheva OS, Karlsson O, Gryganskyi AP, Blume Y (2019) Green potential of Pleurotus spp. in biotechnology. PeerJ 7:e6664. https://doi.org/10.7717/peerj.6664
Article
CAS
PubMed
PubMed Central
Google Scholar
Sherief AA, El-Tanash AB, Temraz AM (2010) Lignocellulolytic enzymes and substrate utilization during growth and fruiting of Pleurotus ostreatus on some solid wastes. J Environ Sci Technol 3:18–34. https://doi.org/10.3923/jest.2010.18.34
Article
CAS
Google Scholar
Silva CMMS, Melo SI, Oliveira RP (2005) Ligninolytic enzyme production by Ganoderma spp. Enzyme Microb Tech 37:324–329. https://doi.org/10.1016/j.enzmictec.2004.12.007
Article
CAS
Google Scholar
Simonić J, Vukojević J, Stajić M, Glamočlija J (2010) Intraspecies diversity within Ganoderma lucidum in the production of laccase and Mn-oxidizing peroxidases during plant residues fermentation. App Biochem Biotech 162:408–415. https://doi.org/10.1007/s12010-009-8833-3
Article
CAS
Google Scholar
Songulashvili G, Elisashvili V, Wasser S, Nevo E, Hadar Y (2006) Laccase and manganese peroxidase activities in Phellinus robustus and Ganoderma adspersum grown on food industry wastes in submerged fermentation. Biotechnol Lett 28:1425–1429. https://doi.org/10.1007/s10529-006-9109-4
Article
CAS
PubMed
Google Scholar
Souza TM, Merritt CS, Reddy CA (1999) Lignin-modifying enzymes of the white-rot basidiomycete Ganoderma lucidum. Appl Environ Microbiol 65:5307–5313. https://doi.org/10.1128/AEM.65.12.5307-5313.1999
Article
PubMed
PubMed Central
Google Scholar
Stajić M, Persky L, Cohen E, Hadar Y, Brceski I, Wasser SP, Nevo E (2004) Screening of laccase, manganese peroxidase, and versatile peroxidase activities of the genus Pleurotus in media with some raw plant materials as carbon sources. Appl Biochem Biotechnol 117:155–164. https://doi.org/10.1385/abab:117:3:155
Article
PubMed
Google Scholar
Stajić M, Persky L, Friesem D, Hadar Y, Wasser SP, Nevo E, Vukojević J (2006) Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme Microb Tech 38:65–73. https://doi.org/10.1016/j.enzmictec.2005.03.026
Article
CAS
Google Scholar
Stajić M, Kukavica B, Vukojević J, Simonić J, Veljović-Jovanović S, Duletić-Laušević S (2010) Wheat straw conversion by enzymatic system of Ganoderma lucidum. BioResources 5:2362–2373. https://doi.org/10.15376/BIORES.5.4.2362-2373
Article
Google Scholar
Stajić M, Ćilerdžić J, Galić M, Ivanović Ž, Vukojević J (2017) Lignocellulose degradation by Daedaleopsis confragosa and D. tricolor. BioResources 12:7195–7204. https://doi.org/10.15376/biores.12.4.7195-7204
Article
CAS
Google Scholar
Van Soest PV, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Article
PubMed
Google Scholar
Wyman V, Henríquez J, Palma C, Carvajal A (2018) Lignocellulosic waste valorisation strategy through enzyme and biogas production. Biores Technol 247:402–411. https://doi.org/10.1016/j.biortech.2017.09.055
Article
CAS
Google Scholar
Xie C, Luo W, Li Z, Yan L, Zhu Z, Wang J, Hu Z, Peng Y (2016) Secretome analysis of Pleurotus eryngii reveals enzymatic composition for ramie stalk degradation. Electrophoresis 37:310–320. https://doi.org/10.1002/elps.201500312
Article
CAS
PubMed
Google Scholar
Yoon LW, Ang TN, Ngoh GC, Chua ASM (2014) Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass Bioenerg 67:319–338. https://doi.org/10.1016/j.biombioe.2014.05.013
Article
CAS
Google Scholar
Youn HD, Hah YC, Kang SO (1995) Role of laccase in lignin degradation by white-rot fungi. FEMS Microbiol Lett 132:183–188. https://doi.org/10.1016/0378-1097(95)00315-V
Article
CAS
Google Scholar
Yuan X, Tian G, Zhao Y, Zhao L, Wang H, Ng TB (2016) Biochemical characteristics of three laccase isoforms from the basidiomycete Pleurotus nebrodensis. Molecules 21:203. https://doi.org/10.3390/molecules21020203
Article
CAS
Google Scholar
Zhang R, Li X, Fadel JG (2002) Oyster mushroom cultivation with rice and wheat straw. Bioresource Technol 82:277–284. https://doi.org/10.1016/s0960-8524(01)00188-2
Article
CAS
Google Scholar