Abd El Gayed ME, Attia EA (2018) Impact of growing media and compound fertilizer rates on growth and flowering of cocks comb (Celosia argentea) Plants. J Plant Prod 9:895–900. https://doi.org/10.21608/jpp.2018.36599
Google Scholar
Abd-Alla MH, Nafady NA, Khalaf DM (2016) Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: implications for induction of autophagy process in root nodule. Agric Ecosyst Environ 218:163–177. https://doi.org/10.1016/j.agee.2015.11.022
Article
CAS
Google Scholar
Abdul-Karim EK, Hussein HZ (2022) The biosynthesis of nanoparticles by fungi and the role of nanoparticles in resisting of pathogenic fungi to plants: a review. Basrah J Agric Sci 35:243–256. https://doi.org/10.37077/25200860.2022.35.1.18
Article
Google Scholar
Abou-Baker NH, Abd-Eladl M, Eid TA (2012) Silicon and water regime responses in bean production under soil saline. J Appl Sci Res 8:5698–5707
Google Scholar
Alaagib SB, Yousif IEA, Alrwis KN, Baig MB, Reed MR (2022) Realizing food security through agricultural development in Sudan. In: Food security and climate-smart food systems. Springer, pp 289–301. https://doi.org/10.1007/978-3-030-92738-7_14
Al-aghabary K, Zhu Z, Shi Q (2004) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress antioxidative enzyme activities in tomato. J Plant Nutr 27:2101–2115. https://doi.org/10.1081/PLN-200034641
Article
CAS
Google Scholar
Anil KS, Naresh C, Ra M, Anitha P (2013) An assessment of faba bean (Vicia faba L.) current status and future prospect. Afr J Agric Res 8:6634–6641. https://doi.org/10.5897/AJAR2013.7335
Article
Google Scholar
Arora NK, Fatima T, Mishra I, Verma M, Mishra J, Mishra V (2018) Environmental sustainability: challenges and viable solutions. Environ Sustain 1:309–340. https://doi.org/10.1007/s42398-018-00038-w
Article
Google Scholar
Asgari F, Majd A, Jonoubi P, Najafi F (2018) Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant Physiol Biochem 127:152–160. https://doi.org/10.1016/j.plaphy.2018.03.021
Article
CAS
PubMed
Google Scholar
Ashraf SA, Siddiqui AJ, Abd Elmoneim OE, Khan MI, Patel M, Alreshidi M, Moin A, Singh R, Snoussi M, Adnan M (2021) Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment. Sci Total Environ 768:144990. https://doi.org/10.1016/j.scitotenv.2021.144990
Article
CAS
PubMed
Google Scholar
Birks LS, Friedman H (1946) Particle size determination from X-ray line broadening. J Appl Phys 17:687–692. https://doi.org/10.1063/1.1707771
Article
CAS
Google Scholar
Bond DA, Jellis GJ, Rowland GG, Guen J Le, Robertson LD, Khalil SA, Li-Juan L (1994) Present status and future strategy in breeding faba beans (Vicia faba L.) for resistance to biotic and abiotic stresses. In: Expanding the production and use of cool season food legumes. Springer, pp 592–616. https://doi.org/10.1007/978-94-011-0798-3_36
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Article
CAS
PubMed
Google Scholar
Brink M, Belay G, De Wet JMJ (2006) Plant resources of tropical Africa 1: cereals and pulses. PROTA Foundation Wageningen, The Netherlands
Google Scholar
Devi P (2000) Principles and methods in plant molecular biology, biochemistry and genetics. Agrobios India 41:57–59
Google Scholar
Dhull SB, Kidwai MK, Siddiq M, Sidhu JS (2022) Faba (broad) bean production, processing, and nutritional profile. Dry Beans Pulses Prod Process Nutr. https://doi.org/10.1002/9781119776802.ch14
Article
Google Scholar
El Messaoudi N, El Khomri M, Ablouh E-H, Bouich A, Lacherai A, Jada A, Lima EC, Sher F (2022) Biosynthesis of SiO2 nanoparticles using extract of Nerium oleander leaves for the removal of tetracycline antibiotic. Chemosphere 287:132453. https://doi.org/10.1016/j.chemosphere.2021.132453
Article
CAS
PubMed
Google Scholar
El-Flaah RF, El-Said RAR, Nassar MA, Hassan M, Abdelaal KAA (2021) Effect of Rhizobium, nano silica and ascorbic acid on morpho-physiological characters and gene expression of POX and PPO in faba bean (Vicia faba L.) under salinity stress conditions. Fresenius Environ Bull 30:5751–5764
CAS
Google Scholar
Ellis MB and Waller JM (1974b) Botrytis fabae. CMI Descriptions of pathogenic fungi and bacteria, No. 432
Elnahal ASM, El-Saadony MT, Saad AM, Desoky E-SM, El-Tahan AM, Rady MM, AbuQamar SF, El-Tarabily KA (2022) The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: a review. Eur J Plant Pathol 162:759–792. https://doi.org/10.1007/s10658-021-02393-7
Article
Google Scholar
El-Zahed MM, Abou-Dobara MI, El-Sayed AK, Baka ZAM (2022) Ag/SiO2nanocomposite mediated by Escherichia coli D8 and their antimicrobial potential. Nov Biotechnol Chim 21:e1023. https://doi.org/10.36547/nbc.1023
Article
Google Scholar
Farouk S, Belal BEA, El-Sharkawy HHA (2017) The role of some elicitors on the management of Roumy Ahmar grapevines downy mildew disease and it’s related to inducing growth and yield characters. Sci Hortic (amsterdam) 225:646–658. https://doi.org/10.1016/j.scienta.2017.07.054
Article
CAS
Google Scholar
Fortunato AA, Debona D, Bernardeli AMA, Rodrigues FA (2015) Defence-related enzymes in soybean resistance to target spot. J Phytopathol 163:731–742. https://doi.org/10.1111/jph.12370
Article
CAS
Google Scholar
Garg N, Singh S (2018) Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. Millsp. (pigeonpea) genotypes under cadmium and zinc stress. J Plant Growth Regul 37:46–63. https://doi.org/10.1007/s00344-017-9708-4
Article
CAS
Google Scholar
Gennari P, Rosero-Moncayo J, Tubiello FN (2019) The FAO contribution to monitoring SDGs for food and agriculture. Nat Plants 5:1196–1197. https://doi.org/10.1038/s41477-019-0564-z
Article
PubMed
Google Scholar
Ghareeb A, Khalil M, Helal AE-M (2021) Philodendron domesticum GS bunting plant responses to potting media. J Product Dev 26:491–512. https://doi.org/10.21608/jpd.2021.184827
Article
Google Scholar
Hall DO, Scurlock JMO, Bolhar-Nordenkampf HR, Leegood RC, Long SP (2013) Photosynthesis and production in a changing environment: a field and laboratory manual. Springer Dordrecht. https://doi.org/10.1007/978-94-011-1566-7
Google Scholar
Hamed SM, Hagag ES, El-Raouf NA (2019) Green production of silver nanoparticles, evaluation of their nematicidal activity against Meloidogyne javanica and their impact on growth of faba bean. Beni-Suef Univ J Basic Appl Sci 8:1–12. https://doi.org/10.1186/s43088-019-0010-3
Article
Google Scholar
Hanounik SB, Hawtin GC (1982) Screening for resistance to chocolate spot caused by Botrytis fabae. In: Faba bean improvement. Springer, pp 243–250. https://doi.org/10.1007/978-94-009-7499-9_25
Hasan KA, Soliman H, Baka Z, Shabana YM (2020) Efficacy of nano-silicon in the control of chocolate spot disease of Vicia faba L. caused by Botrytis fabae. Egypt J Basic Appl Sci 7:53–66. https://doi.org/10.1080/2314808X.2020.1727627
Article
Google Scholar
Hayat MA (1989) Principles and techniques of electron microscopy. In: Biological applications, volume 3. Macmillan Press, New York, NY, pp 229–230
Hussain A, Rizwan M, Ali Q, Ali S (2019) Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environ Sci Pollut Res 26:7579–7588
Article
CAS
Google Scholar
Ismail LM, Soliman MI, El-aziz MHA (2022) Impact of silica ions and nano silica on growth and productivity of pea plants under salinity stress. Plants 11:494–515. https://doi.org/10.3390/plants11040494
Article
CAS
PubMed
PubMed Central
Google Scholar
Issac RA, Johnson WC (1975) Collaborative study of wet and dry techniques for the elemental analysis of plant tissue by Atomic Absorption Spectrophotometer. J Assoc of Agric Chem 58:436. https://doi.org/10.1093/jaoac/58.3.436
Article
Google Scholar
Jeon H-J, Yi S-C, Oh S-G (2003) Preparation and antibacterial effects of Ag–SiO2 thin films by sol–gel method. Biomaterials 24:4921–4928. https://doi.org/10.1016/S0142-9612(03)00415-0
Article
CAS
PubMed
Google Scholar
Kadhim FJ, Hammadi OA, Mutesher NH (2022) Photocatalytic activity of TiO2/SiO2 nanocomposites synthesized by reactive magnetron sputtering technique. J Nanophotonics 16:26005. https://doi.org/10.1117/1.JNP.16.026005
Article
CAS
Google Scholar
Kohmoto K, Itoh Y, Shimomura N, Kondoh Y, Otani H, Kodama M, Nishimura S, Nakatsuka S (1993) Isolation and biological activities of two host-specific toxins from the tangerine pathotype of Alternariaalternata. Phytopathology 83:495–502. https://doi.org/10.1094/phyto-83-495
Article
CAS
Google Scholar
Li Z, Chen J, Liu F, Liu A, Wang Q, Sun H, Wen L (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci Former Pestic Sci 63:241–246. https://doi.org/10.1002/ps.1301
Article
CAS
Google Scholar
Liu J, Zong Y, Qin G, Li B, Tian S (2010) Plasma membrane damage contributes to antifungal activity of silicon against Penicillium digitatum. Curr Microbiol 61:274–279. https://doi.org/10.1007/s00284-010-9607-4
Article
CAS
PubMed
Google Scholar
Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7:1–21. https://doi.org/10.1038/s41598-017-08669-5
Article
CAS
Google Scholar
Mahmoud YA-G, Abu El Souod SM, Alsokari S, Ismaei A-E, Attia M, Ebrahim MK (2011) Recent approaches for controlling brown spot disease of faba bean in Egypt. Egypt Acad J Biol Sci G Microbiol 3:41–53. https://doi.org/10.21608/EAJBSG.2011.16694
Article
Google Scholar
Mazhar AA, Abd El-Aziz NG, Habba E (2010) Impact of different soil media on growth and chemical constituents of Jatropha curcas L. seedlings grown under water regime. J Amer Sci 6:549–556
Google Scholar
Million JB, Gonzalez RX, Carrier III WD, Sartain JB (1987) Production of vegetables on mixtures of sand tailings and waste phosphatic clay. In: Proceedings of 1987 symposium on mining, hydrology, sedimentology, and reclamation. University of Kentucky. pp 355–362
Mukarram M, Khan MMA, Corpas FJ (2021) Silicon nanoparticles elicit an increase in lemongrass (Cymbopogon flexuosus (Steud.) Wats) agronomic parameters with a higher essential oil yield. J Hazard Mater 412:125254. https://doi.org/10.1016/j.jhazmat.2021.125254
Article
CAS
PubMed
Google Scholar
Nabih A (1991) Effect of some potting media and chemical fertilization on growth, flowering and corm productivity of Freesia refracta cv. Aurora J Agric Res Tanta Univ 17:713–733
Google Scholar
Nguyen CMT, Nguyen VT (2020) Room-temperature polyol synthesis of Ag/SiO2 nanocomposite as a catalyst for 4-nitrophenol reduction. Adv Mater Sci Eng. https://doi.org/10.1155/2020/6650576
Article
Google Scholar
Omar SAM (2021) The importance of faba bean (Vicia faba L.) diseases in Egypt. In: Mitigating environmental stresses for agricultural sustainability in Egypt. Springer, pp 371–388.https://doi.org/10.1007/978-3-030-64323-2_13
Ouda S, Zohry AE-H (2022) Climate Extremes and Crops. In: Climate-smart agriculture. Springer, pp 93–114. https://doi.org/10.1007/978-3-030-93111-7_5
Polanco LR, Rodrigues FA, Nascimento KJT, Cruz MFA, Curvelo CRS, DaMatta FM, Vale FXR (2014) Photosynthetic gas exchange and antioxidative system in common bean plants infected by Colletotrichum lindemuthianum and supplied with silicon. Trop Plant Pathol 39:35–42. https://doi.org/10.1590/S1982-56762014000100005
Article
Google Scholar
Qados AMSA (2015) Mechanism of nanosilicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants. Am J Exp Agric 7:78–95. https://doi.org/10.9734/AJEA/2015/15110
Article
Google Scholar
Richmond KE, Sussman M (2003) Got silicon ? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272. https://doi.org/10.1016/S1369-5266(03)00041-4
Article
CAS
PubMed
Google Scholar
Rodrigues MC, Rolim WR, Viana MM, Souza TR, Gonçalves F, Tanaka CJ, Bueno-Silva B, Seabra AB (2020) Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. J Dent 96:103327. https://doi.org/10.1016/j.jdent.2020.103327
Article
CAS
PubMed
Google Scholar
Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855. https://doi.org/10.1016/j.jplph.2005.05.010
Article
CAS
PubMed
Google Scholar
Roohizadeh G, Arbabian S, Tajadod G, Majd A, Salimpour F (2014) The study of sodium silicate effects on the total protein content, and the activities of catalase, peroxidase and superoxide dismutase of Vicia faba L. Bull Environ Pharmacol Life Sci 3:243
Google Scholar
Rubiales D, Khazaei H (2022) Advances in disease and pest resistance in faba bean. Theor Appl Genet. https://doi.org/10.1007/s00122-021-04022-7
Article
PubMed
Google Scholar
Sadeghi B, Ghammamy S, Sedaghat S (2013) Synthesis and characterization of silver-silica heterogeneous nanocomposite particles by lithium aluminum hydroxide reducing method. IJND 3:271-279.https://doi.org/10.7508/ijnd.2012.04.003
Sahile S, Ahmed S, Fininsa C, Abang MM, Sakhuja PK (2008) Survey of chocolate spot (Botrytis fabae) disease of faba bean (Vicia faba L.) and assessment of factors influencing disease epidemics in northern Ethiopia. Crop Prot 27:1457–1463. https://doi.org/10.1016/j.cropro.2008.07.011
Article
Google Scholar
Sardiña JR (1929) Una nueva especie de Botrytis que ataca a las Habas. Mem. R. Boletín La Real Soc Española Hist Nat 15:291–295
Google Scholar
Sarkar MM, Mathur P, Roy S (2022) Silicon and nano-silicon: New frontiers of biostimulants for plant growth and stress amelioration. In: Silicon and nano-silicon in environmental stress management and crop quality improvement. Elsevier, pp 17–36. https://doi.org/10.1016/B978-0-323-91225-9.00010-8
Shah V, Collins D, Walker VK, Shah S (2014) The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environ Res Lett 9:024001. https://doi.org/10.1088/1748-9326/9/2/024001
Article
CAS
Google Scholar
Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA (2015) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 99:4579–4593. https://doi.org/10.1007/s00253-015-6622-1
Article
CAS
PubMed
Google Scholar
Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158
CAS
Google Scholar
Snell FD, Snell CT (1959) Colorimetric methods of analysis. 2ndEdition, Van Nostrand, New York, pp 78–139
Tahir MA, Rahmatullah T, Aziz M, Ashraf S, Kanwal S, Maqsood MA (2006) Beneficial effects of silicon in wheat (Triticum aestivum L.) under salinity stress. Pakistan J Bot 38:1715–1722
Google Scholar
Tripathi DK, Singh VP, Ahmad P, Chauhan DK, Prasad SM (Eds.) (2016) Silicon and Nanotechnology: Role in Agriculture and Future Perspectives. In: Silicon in Plants: Advances and Future Prospects (1st ed.). CRC Press, pp 101-116. https://doi.org/10.1201/9781315369310
Wei L, Chen X, Gao X, Guo R, Xu B (2014) Preparation of Ag/SiO2 powder with light color and antibacterial performance. Powder Technol 253:424–428. https://doi.org/10.1016/j.powtec.2013.12.011
Article
CAS
Google Scholar
Wu ZG, Jia YR, Wang J, Guo Y, Gao JF (2016) Core-shell SiO2/Ag composite spheres: synthesis, characterization and photocatalytic properties. Mater Sci 34:806–810. https://doi.org/10.1515/msp-2016-0121
Article
CAS
Google Scholar
Xie Z, Song F, Xu H, Shao H, Song R (2014) Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil. Sci World J 2014:718716. https://doi.org/10.1155/2014/718716
Article
Google Scholar
Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L). Plant Sci 167:527–533. https://doi.org/10.1016/j.plantsci.2004.04.020
Article
CAS
Google Scholar