Duck B (2018) Basic measurements of radiation at station Newcastle (2017–11) Retrieved from: https://doi.org/10.1594/PANGAEA.896530
Adarme-Vega TC, Lim DKY, Timmins M, Vernen F, Li Y, Schenk PM (2012) Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact 11(1):96. https://doi.org/10.1186/1475-2859-11-96
Article
CAS
Google Scholar
Aussant J, Guihéneuf F, Stengel DB (2018) Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae. Appl Microbiol Biotechnol 102(12):5279–5297. https://doi.org/10.1007/s00253-018-9001-x
Article
CAS
Google Scholar
Barta DG, Coman V, Vodnar DC (2021) Microalgae as sources of omega-3 polyunsaturated fatty acids: biotechnological aspects. Algal Res 58:102410. https://doi.org/10.1016/j.algal.2021.102410
Article
Google Scholar
Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70(1):313–321. https://doi.org/10.1016/S0168-1656(99)00083-8
Article
CAS
Google Scholar
Chen D, Yuan X, Zheng X, Fang J, Lin G, Li R, Xue T (2022) Multi-omics analyses provide insight into the biosynthesis pathways of fucoxanthin in Isochrysis galbana. Genom Proteom Bioinform. https://doi.org/10.1016/j.gpb.2022.05.010
Article
Google Scholar
Chua E, Schenk P (2017) A biorefinery for Nannochloropsis: induction, harvesting, and extraction of EPA-rich oil and high-value protein. Biores Technol. https://doi.org/10.1016/j.biortech.2017.05.124
Article
Google Scholar
Cleland LG, James MJ, Proudman SM (2003) The role of fish oils in the treatment of rheumatoid arthritis. Drugs 63(9):845–853. https://doi.org/10.2165/00003495-200363090-00001
Article
CAS
Google Scholar
Draaisma RB, Wijffels RH, Slegers PM, Brentner LB, Roy A, Barbosa MJ (2013) Food commodities from microalgae. Curr Opin Biotechnol 24(2):169–177. https://doi.org/10.1016/j.copbio.2012.09.012
Article
CAS
Google Scholar
EFSA Panel on Dietetic Products, N., & Allergies (2012) Scientific opinion on the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J 10(7):2815. https://doi.org/10.2903/j.efsa.2012.2815
Article
CAS
Google Scholar
FAO FAAO (2018) The state of world fisheries and aquaculture 2018
Fawley MW, Jameson I, Fawley KP (2015) The phylogeny of the genus Nannochloropsis (Monodopsidaceae, Eustigmatophyceae), with descriptions of N. australis sp. Nov. and Microchloropsis gen. nov. Phycologia 54(5):545–552. https://doi.org/10.2216/15-60.1
Article
CAS
Google Scholar
Gharat K, Agarwal A, Pandit RA, Lali AM (2018) Development of fed batch strategies to improve the production of eicosapentaenoic acid from a marine microalga Nannochloropsis oculata. Bioresour Technol Rep 4:193–201. https://doi.org/10.1016/j.biteb.2018.10.011
Article
Google Scholar
Gogus U, Smith C (2010) n − 3 Omega fatty acids: a review of current knowledge. Int J Food Sci Technol 45(3):417–436. https://doi.org/10.1111/j.1365-2621.2009.02151.x
Article
CAS
Google Scholar
Gu W, Kavanagh JM, McClure DD (2022) Towards a sustainable supply of omega-3 fatty acids: screening microalgae for scalable production of eicosapentaenoic acid (EPA). Algal Res 61:102564. https://doi.org/10.1016/j.algal.2021.102564
Article
Google Scholar
Guihéneuf F, Stengel DB (2013) LC-PUFA-enriched oil production by microalgae: accumulation of lipid and triacylglycerols containing n − 3 LC-PUFA is triggered by nitrogen limitation and inorganic carbon availability in the marine haptophyte Pavlova lutheri. Mar Drugs 11(11):4246–4266
Article
Google Scholar
Hamilton ML, Warwick J, Terry A, Allen MJ, Napier JA, Sayanova O (2015) Towards the industrial production of omega-3 long chain polyunsaturated fatty acids from a genetically modified diatom Phaeodactylum tricornutum. PLoS ONE 10(12):e0144054. https://doi.org/10.1371/journal.pone.0144054
Article
CAS
Google Scholar
Havel J, Franco-Lara E, Weuster-Botz D (2008) A parallel bubble column system for the cultivation of phototrophic microorganisms. Biotechnol Lett 30(7):1197–1200. https://doi.org/10.1007/s10529-008-9680-y
Article
CAS
Google Scholar
Hu H, Ma L-L, Shen X-F, Li J-Y, Wang H-F, Zeng RJ (2018) Effect of cultivation mode on the production of docosahexaenoic acid by Tisochrysis lutea. AMB Express 8(1):50. https://doi.org/10.1186/s13568-018-0580-9
Article
CAS
Google Scholar
Hu H, Li JY, Pan XR, Zhang F, Ma LL, Wang HJ, Zeng RJ (2019) Different DHA or EPA production responses to nutrient stress in the marine microalga Tisochrysis lutea and the freshwater microalga Monodus subterraneus. Sci Total Environ 656:140–149. https://doi.org/10.1016/j.scitotenv.2018.11.346
Article
CAS
Google Scholar
Huerlimann R, de Nys R, Heimann K (2010) Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol Bioeng 107(2):245–257. https://doi.org/10.1002/bit.22809
Article
CAS
Google Scholar
Hulatt CJ, Wijffels RH, Bolla S, Kiron V (2017) Production of fatty acids and protein by nannochloropsis in flat-plate photobioreactors. PLoS ONE 12(1):e0170440. https://doi.org/10.1371/journal.pone.0170440
Article
CAS
Google Scholar
Ishika T, Moheimani NR, Laird DW, Bahri PA (2019) Stepwise culture approach optimizes the biomass productivity of microalgae cultivated using an incremental salinity increase strategy. Biomass Bioenerg 127:105274. https://doi.org/10.1016/j.biombioe.2019.105274
Article
CAS
Google Scholar
Kim G, Bae J, Lee K (2016) Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp. Biores Technol 205:274–279. https://doi.org/10.1016/j.biortech.2016.01.045
Article
CAS
Google Scholar
Kuczynska P, Jemiola-Rzeminska M, Strzalka K (2015) Photosynthetic pigments in diatoms. Mar Drugs 13(9):5847–5881. https://doi.org/10.3390/md13095847
Article
CAS
Google Scholar
Lin Y-H, Chang F-L, Tsao C-Y, Leu J-Y (2007) Influence of growth phase and nutrient source on fatty acid composition of Isochrysis galbana CCMP 1324 in a batch photoreactor. Biochem Eng J 37(2):166–176. https://doi.org/10.1016/j.bej.2007.04.014
Article
CAS
Google Scholar
Maglie M, Baldisserotto C, Guerrini A, Sabia A, Ferroni L, Pancaldi S (2021) A co-cultivation process of Nannochloropsis oculata and Tisochrysis lutea induces morpho-physiological and biochemical variations potentially useful for biotechnological purposes. J Appl Phycol 33(5):2817–2832. https://doi.org/10.1007/s10811-021-02511-2
Article
CAS
Google Scholar
Metting FB (1996) Biodiversity and application of microalgae. J Ind Microbiol 17(5):477–489. https://doi.org/10.1007/BF01574779
Article
CAS
Google Scholar
Molina Grima E, Sánchez Pérez JA, García Camacho F, Fernández Sevilla JM, Acién Fernández FG (1994) Effect of growth rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis galbana in chemostat culture. Appl Microbiol Biotechnol 41(1):23–27. https://doi.org/10.1007/BF00166076
Article
Google Scholar
Napier JA, Usher S, Haslam RP, Ruiz-Lopez N, Sayanova O (2015) Transgenic plants as a sustainable, terrestrial source of fish oils. Eur J Lipid Sci Technol 117(9):1317–1324. https://doi.org/10.1002/ejlt.201400452
Article
CAS
Google Scholar
Nielsen GL, Faarvang KL, Thomsen BS, Teglbjærg KL, Jensen LT, Hansen TM, Ernst E (1992) The effects of dietary supplementation with n − 3 polyunsaturated fatty acids in patients with rheumatoid arthritis: a randomized, double blind trial. Eur J Clin Invest 22:1
Article
Google Scholar
Pfaffinger CE, Schöne D, Trunz S, Löwe H, Weuster-Botz D (2016) Model-based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors. Algal Res 20:153–163. https://doi.org/10.1016/j.algal.2016.10.002
Article
Google Scholar
Pfaffinger CE, Severin TS, Apel AC, Göbel J, Sauter J, Weuster-Botz D (2019) Light-dependent growth kinetics enable scale-up of well-mixed phototrophic bioprocesses in different types of photobioreactors. J Biotechnol 297:41–48. https://doi.org/10.1016/j.jbiotec.2019.03.003
Article
CAS
Google Scholar
Polishchuk A, Valev D, Tarvainen M, Mishra S, Kinnunen V, Antal T, Tyystjärvi E (2015) Cultivation of Nannochloropsis for eicosapentaenoic acid production in wastewaters of pulp and paper industry. Biores Technol 193:469–476. https://doi.org/10.1016/j.biortech.2015.06.135
Article
CAS
Google Scholar
Poudyal H, Panchal SK, Diwan V, Brown L (2011) Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action. Prog Lipid Res 50(4):372–387. https://doi.org/10.1016/j.plipres.2011.06.003
Article
CAS
Google Scholar
Rasdi NW, Qin JG (2015) Effect of N:P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea. J Appl Phycol 27(6):2221–2230. https://doi.org/10.1007/s10811-014-0495-z
Article
CAS
Google Scholar
Rashid N, Ryu AJ, Jeong KJ, Lee B, Chang Y-K (2019) Co-cultivation of two freshwater microalgae species to improve biomass productivity and biodiesel production. Energy Convers Manag 196:640–648. https://doi.org/10.1016/j.enconman.2019.05.106
Article
CAS
Google Scholar
Remize M, Brunel Y, Silva JL, Berthon JY, Filaire E (2021) Microalgae n − 3 PUFAs production and use in food and feed industries. Mar Drugs. https://doi.org/10.3390/md19020113
Article
Google Scholar
Rennie KL, Hughes J, Lang R, Jebb SA (2003) Nutritional management of rheumatoid arthritis: a review of the evidence. J Hum Nutr Diet 16(2):97–109. https://doi.org/10.1046/j.1365-277x.2003.00423.x
Article
CAS
Google Scholar
Riemann B (1978) Carotenoid interference in the spectrophotometry determination of chlorophyll degradation products from natural populations of phytoplankton1. Limnol Oceanogr 23(5):1059–1066. https://doi.org/10.4319/lo.1978.23.5.1059
Article
CAS
Google Scholar
Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112. https://doi.org/10.1002/bit.22033
Article
CAS
Google Scholar
Ryckebosch E, Muylaert K, Foubert I (2012) Optimization of an analytical procedure for extraction of lipids from microalgae. J Am Oil Chem Soc 89(2):189–198. https://doi.org/10.1007/s11746-011-1903-z
Article
CAS
Google Scholar
Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muylaert K, Foubert I (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400. https://doi.org/10.1016/j.foodchem.2014.03.087
Article
CAS
Google Scholar
San Pedro A, González-López CV, Acién FG, Molina-Grima E (2014) Outdoor pilot-scale production of Nannochloropsis gaditana: Influence of culture parameters and lipid production rates in tubular photobioreactors. Biores Technol 169:667–676. https://doi.org/10.1016/j.biortech.2014.07.052
Article
CAS
Google Scholar
Schädler T, Caballero Cerbon D, de Oliveira L, Garbe D, Brück T, Weuster-Botz D (2019) Production of lipids with Microchloropsis salina in open thin-layer cascade photobioreactors. Bioresour Technol 289:121682. https://doi.org/10.1016/j.biortech.2019.121682
Article
CAS
Google Scholar
Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43. https://doi.org/10.1007/s12155-008-9008-8
Article
Google Scholar
Sijtsma L, de Swaaf ME (2004) Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 64(2):146–153. https://doi.org/10.1007/s00253-003-1525-y
Article
CAS
Google Scholar
Slocombe SP, Zhang Q, Ross M, Anderson A, Thomas NJ, Lapresa Á, Day JG (2015) Unlocking nature’s treasure-chest: screening for oleaginous algae. Sci Rep 5(1):9844. https://doi.org/10.1038/srep09844
Article
Google Scholar
Sun Z, Wang X, Liu J (2019) Screening of Isochrysis strains for simultaneous production of docosahexaenoic acid and fucoxanthin. Algal Res 41:101545. https://doi.org/10.1016/j.algal.2019.101545
Article
Google Scholar
Tejido-Nuñez Y, Aymerich E, Sancho L, Refardt D (2020) Co-cultivation of microalgae in aquaculture water: interactions, growth and nutrient removal efficiency at laboratory- and pilot-scale. Algal Res 49:101940. https://doi.org/10.1016/j.algal.2020.101940
Article
Google Scholar
Tocher DR (2015) Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 449:94–107. https://doi.org/10.1016/j.aquaculture.2015.01.010
Article
CAS
Google Scholar
Tocher DR, Betancor MB, Sprague M, Olsen RE, Napier JA (2019) Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: bridging the gap between supply and demand. Nutrients 11(1):89
Article
CAS
Google Scholar
Volker DH, Fitzgerald P, Major GA, Garg M (2000) Efficacy of fish oil concentrate in the treatment of rheumatoid arthritis. J Rheumatol 27(10):2343–2346
CAS
Google Scholar
Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718. https://doi.org/10.1007/s00253-008-1518-y
Article
CAS
Google Scholar
Winwood R (2013) Recent developments in the commercial production of DHA and EPA rich oils from micro-algae. OCL 20:D604. https://doi.org/10.1051/ocl/2013030
Article
Google Scholar
Wolf L, Cummings T, Müller K, Reppke M, Volkmar M, Weuster-Botz D (2021) Production of β-carotene with Dunaliella salina CCAP19/18 at physically simulated outdoor conditions. Eng Life Sci 21(3–4):115–125. https://doi.org/10.1002/elsc.202000044
Article
CAS
Google Scholar
Zhao P, Yu X, Li J, Tang X, Huang Z (2014) Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. J Biosci Bioeng 118(1):72–77. https://doi.org/10.1016/j.jbiosc.2013.12.014
Article
CAS
Google Scholar