Abeln F, Chuck CJ (2021) The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 20:221. https://doi.org/10.1186/s12934-021-01712-1
Article
PubMed
PubMed Central
CAS
Google Scholar
Abomohra AE-F, Elsayed M, Esakkimuthu S, El-Sheekh M, Hanelt D (2020) Potential of fat, oil and grease (FOG) for biodiesel production: a critical review on the recent progress and future perspectives. Prog Energy Combust Sci 81:100868. https://doi.org/10.1016/j.pecs.2020.100868
Article
Google Scholar
Alalwan HA, Alminshid AH (2021) CO2 capturing methods: chemical looping combustion (CLC) as a promising technique. Sci Total Environ 788:147850. https://doi.org/10.1016/j.scitotenv.2021.147850
Article
PubMed
CAS
Google Scholar
Anahas AMP, Muralitharan G (2018) Characterization of heterocystous cyanobacterial strains for biodiesel production based on fatty acid content analysis and hydrocarbon production. Energy Convers Manage 157:423–437. https://doi.org/10.1016/j.enconman.2017.12.012
Article
CAS
Google Scholar
Antonovsky N, Gleizer S, Noor E, Zohar Y, Herz E, Barenholz U et al (2016) Sugar synthesis from CO2 in Escherichia coli. Cell 166:115–125. https://doi.org/10.1016/j.cell.2016.05.064
Article
PubMed
PubMed Central
CAS
Google Scholar
Azhari NJ, Nurdini N, Mardiana S, Ilmi T, Fajar ATN, Makertihartha IGBN et al (2022) Zeolite-based catalyst for direct conversion of CO2 to C2+ hydrocarbon: a review. J CO2 Util 59. https://doi.org/10.1016/j.jcou.2022.101969
Article
Google Scholar
Bai W, Ranaivoarisoa TO, Singh R, Rengasamy K, Bose A (2021) n-Butanol production by Rhodopseudomonas palustris TIE-1. Commun Biol 4:1257. https://doi.org/10.1038/s42003-021-02781-z
Article
PubMed
PubMed Central
CAS
Google Scholar
Brigham C (2019) Perspectives for the biotechnological production of biofuels from CO2 and H2 using Ralstonia eutropha and other ‘Knallgas’ bacteria. Appl Microbiol Biotechnol 103:2113–2120. https://doi.org/10.1007/s00253-019-09636-y
Bharathiraja B, Iyyappan J, Gopinath M, Jayamuthunagai J, PraveenKumar R (2022) Transgenicism in algae: Challenges in compatibility, global scenario and future prospects for next generation biofuel production. Renew Sust Energ Rev 15:4111829. https://doi.org/10.1016/j.rser.2021.111829
Article
CAS
Google Scholar
Bhatia SK, Bhatia RK, Jeon J-M, Kumar G, Yang Y-H (2019) Carbon dioxide capture and bioenergy production using biological system – a review. Renew Sust Energ Rev 110:143–158. https://doi.org/10.1016/j.rser.2019.04.070
Article
CAS
Google Scholar
Burlacot A, Dao O, Auroy P, Cuine S, Li-Beisson Y, Peltier G (2022) Alternative photosynthesis pathways drive the algal CO2-concentrating mechanism. Nature 605:366–371. https://doi.org/10.1038/s41586-022-04662-9
Article
PubMed
CAS
Google Scholar
Cai P, Wu X, Deng J, Gao L, Shen Y, Yao L et al (2022) Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris. Proc Natl Acad Sci U S A 119:e2201711119. https://doi.org/10.1073/pnas.2201711119
Article
PubMed
CAS
Google Scholar
Cheah WY, Ling TC, Juan JC, Lee DJ, Chang JS, Show PL (2016) Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production. Bioresour Technol 215:346–356. https://doi.org/10.1016/j.biortech.2016.04.019
Article
PubMed
CAS
Google Scholar
Chen H, Wang Q (2021) Regulatory mechanisms of lipid biosynthesis in microalgae. Biol Rev Camb Philos Soc 96:2373–2391. https://doi.org/10.1111/brv.12759
Article
PubMed
CAS
Google Scholar
Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J et al (2018) DCEO biotechnology: tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals. Chem Rev 118:4–72. https://doi.org/10.1021/acs.chemrev.6b00804
Article
PubMed
CAS
Google Scholar
Chen G, Jiang N, Villalobos Solis MI, Murdoch FK, Murdoch RW, Xie Y et al (2021) Anaerobic microbial metabolism of dichloroacetate. Mbio 12:e00537-e621. https://doi.org/10.1128/mbio.00537-21
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen B-S, Zeng Y-Y, Liu L, Chen L, Duan P, Luque R et al (2022a) Advances in catalytic decarboxylation of bioderived fatty acids to diesel-range alkanes. Renew Sust Energ Rev 158:112178. https://doi.org/10.1016/j.rser.2022.112178
Article
CAS
Google Scholar
Chen R, Gao J, Yu W, Chen X, Zhai X, Chen Y et al (2022b) Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast. Nat Chem Biol 18:520–529. https://doi.org/10.1038/s41589-022-01014-6
Article
PubMed
CAS
Google Scholar
Cheng Z, Li S, Liu Y, Zhang Y, Ling Z, Yang M et al (2022) Post-combustion CO2 capture and separation in flue gas based on hydrate technology: a review. Renew Sust Energ Rev 154:111806. https://doi.org/10.1016/j.rser.2021.111806
Article
CAS
Google Scholar
Choi HI, Hwang SW, Kim J, Park B, Jin E, Choi IG et al (2021) Augmented CO2 tolerance by expressing a single H+-pump enables microalgal valorization of industrial flue gas. Nat Commun 12:6049. https://doi.org/10.1038/s41467-021-26325-5
Article
PubMed
PubMed Central
CAS
Google Scholar
Claassens NJ (2021) Reductive glycine pathway: a versatile route for one-carbon biotech. Trends Biotechnol 39:327–329. https://doi.org/10.1016/j.tibtech.2021.02.005
Article
PubMed
CAS
Google Scholar
Daneshvar E, Wicker RJ, Show P-L, Bhatnagar A (2022) Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization – a review. Chem Eng J 427:130884. https://doi.org/10.1016/j.cej.2021.130884
Article
CAS
Google Scholar
Das M, Patra P, Ghosh A (2020a) Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels. Renew Sust Energ Rev 119:109562. https://doi.org/10.1016/j.rser.2019.109562
Article
CAS
Google Scholar
Das S, Perez-Ramirez J, Gong J, Dewangan N, Hidajat K, Gates BC et al (2020b) Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem Soc Rev 49:2937–3004. https://doi.org/10.1039/c9cs00713j
Article
PubMed
CAS
Google Scholar
de Morais MG, de Morais EG, Duarte JH, Deamici KM, Mitchell BG, Costa JAV (2019) Biological CO2 mitigation by microalgae: technological trends, future prospects and challenges. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-019-2650-9
Article
PubMed
Google Scholar
de Valk SC, Bouwmeester SE, de Hulster E, Mans R (2022) Engineering proton-coupled hexose uptake in Saccharomyces cerevisiae for improved ethanol yield. Biotechnol Biofuels Bioprod 15:47. https://doi.org/10.1186/s13068-022-02145-7
Article
PubMed
PubMed Central
CAS
Google Scholar
Deng C, Wu Y, Lv X, Li J, Liu Y, Du G et al (2022) Refactoring transcription factors for metabolic engineering. Biotechnol Adv 57:107935. https://doi.org/10.1016/j.biotechadv.2022.107935
Article
PubMed
CAS
Google Scholar
Duncker KE, Holmes ZA, You L (2021) Engineered microbial consortia: strategies and applications. Microb Cell Fact 20:211. https://doi.org/10.1186/s12934-021-01699-9
Article
PubMed
PubMed Central
CAS
Google Scholar
Feldman D, Kowbel DJ, Cohen A, Glass NL, Hadar Y, Yarden O (2019) Identification and manipulation of Neurospora crassa genes involved in sensitivity to furfural. Biotechnol Biofuels 12:210. https://doi.org/10.1186/s13068-019-1550-4
Article
PubMed
PubMed Central
CAS
Google Scholar
Gajewski J, Pavlovic R, Fischer M, Boles E, Grininger M (2017) Engineering fungal de novo fatty acid synthesis for short chain fatty acid production. Nat Commun 8:14650. https://doi.org/10.1038/ncomms14650
Article
PubMed
PubMed Central
Google Scholar
Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5:9857–9865. https://doi.org/10.1039/c2ee22675h
Article
CAS
Google Scholar
Gao Y, Zhang H, Fan M, Jia C, Shi L, Pan X, et al (2020) Structural insights into catalytic mechanism and product delivery of cyanobacterial acyl-acyl carrier protein reductase. Nat Commun 11:1525. https://doi.org/10.1038/s41467-020-15268-y
Gao J, Li Y, Yu W, Zhou YJ (2022a) Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol. Nat Metab 4:932–943. https://doi.org/10.1038/s42255-022-00601-0
Article
PubMed
CAS
Google Scholar
Gao J, Ye C, Cheng J, Jiang L, Yuan X, Lian J (2022b) Enhancing homologous recombination efficiency in Pichia pastoris for multiplex genome integration using short homology arms. ACS Synth Biol 11:547–553. https://doi.org/10.1021/acssynbio.1c00366
Article
PubMed
CAS
Google Scholar
Gassler T, Sauer M, Gasser B, Egermeier M, Troyer C, Causon T et al (2020) The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat Biotechnol 38:210–216. https://doi.org/10.1038/s41587-019-0363-0
Article
PubMed
CAS
Google Scholar
Giordano L, Gubis J, Bierman G, Kapteijn F (2019) Conceptual design of membrane-based pre-combustion CO2 capture process: role of permeance and selectivity on performance and costs. J Membr Sci 575:229–241. https://doi.org/10.1016/j.memsci.2018.12.063
Article
CAS
Google Scholar
Gonçalves AL, Simões M (2017) Metabolic engineering of Escherichia coli for higher alcohols production: an environmentally friendly alternative to fossil fuels. Renew Sust Energ Rev 77:580–589. https://doi.org/10.1016/j.rser.2017.04.047
Article
CAS
Google Scholar
Hon S, Olson DG, Holwerda EK, Lanahan AA, Murphy SJL, Maloney MI et al (2017) The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in clostridium thermocellum. Metab Eng 42:175–184. https://doi.org/10.1016/j.ymben.2017.06.011
Article
PubMed
CAS
Google Scholar
Hoteit H, Fahs M, Soltanian MR (2019) Assessment of CO2 injectivity during sequestration in depleted gas reservoirs. Geosciences 9:199. https://doi.org/10.3390/geosciences9050199
Article
CAS
Google Scholar
Hu Z, Qi Y, Zhao L, Chen G (2018) Interactions between microalgae and microorganisms for wastewater remediation and biofuel production. Waste Biomass Valorization 10:3907–3919. https://doi.org/10.1007/s12649-018-0325-7
Article
CAS
Google Scholar
Hu G, Li Z, Ma D, Ye C, Zhang L, Gao C et al (2021) Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nat Catal 4:395–406. https://doi.org/10.1038/s41929-021-00606-0
Article
CAS
Google Scholar
Huang J, Zhao P, Jin X, Wang Y, Yuan H, Zhu X (2020) Enzymatic biofuel cells based on protein engineering: recent advances and future prospects. Biomater Sci 8:5230–5240. https://doi.org/10.1039/d0bm00925c
Article
PubMed
CAS
Google Scholar
Huang J, Jian Y, Zhu P, Abdelaziz O, Li H (2022) Research progress on the photo-driven catalytic production of biodiesel. Front Chem 10:904251. https://doi.org/10.3389/fchem.2022.904251
Article
PubMed
PubMed Central
CAS
Google Scholar
Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM (2018) Cyanobacterial blooms. Nat Rev Microbiol 16:471–483. https://doi.org/10.1038/s41579-018-0040-1
Article
PubMed
CAS
Google Scholar
Huo K, Zhao F, Zhang F, Liu R, Yang C (2020) Morphology engineering: a new strategy to construct microbial cell factories. World J Microbiol Biotechnol 36:127. https://doi.org/10.1007/s11274-020-02903-5
Article
PubMed
Google Scholar
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T et al (2021) Enzymes, in vivo biocatalysis, and metabolic engineering for enabling a circular economy and sustainability. Chem Rev 121:10367–10451. https://doi.org/10.1021/acs.chemrev.1c00121
Article
PubMed
CAS
Google Scholar
Izadi P, Harnisch F (2022) Microbial | electrochemical CO2 reduction: To integrate or not to integrate? Joule 6:935–940. https://doi.org/10.1016/j.joule.2022.04.005
Article
Google Scholar
Jatain I, Dubey KK, Sharma M, Usmani Z, Sharma M, Gupta VK (2021) Synthetic biology potential for carbon sequestration into biocommodities. J Cleaner Prod 323:129176. https://doi.org/10.1016/j.jclepro.2021.129176
Article
CAS
Google Scholar
Jeon S, Lim JM, Lee HG, Shin SE, Kang NK, Park YI et al (2017) Current status and perspectives of genome editing technology for microalgae. Biotechnol Biofuels 10:267. https://doi.org/10.1186/s13068-017-0957-z
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang W, Hernandez Villamor D, Peng H, Chen J, Liu L, Haritos V et al (2021) Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nat Chem Biol 17:845–855. https://doi.org/10.1038/s41589-021-00836-0
Article
PubMed
CAS
Google Scholar
Jiao JY, Fu L, Hua ZS, Liu L, Salam N, Liu PF et al (2021) Insight into the function and evolution of the cc pathway in Actinobacteria. ISME J 15:3005–3018. https://doi.org/10.1038/s41396-021-00935-9
Article
PubMed
PubMed Central
CAS
Google Scholar
Joshi S, Mishra S (2022) Recent advances in biofuel production through metabolic engineering. Bioresour Technol 352:127037. https://doi.org/10.1016/j.biortech.2022.127037
Article
PubMed
CAS
Google Scholar
Jung SW, Yeom J, Park JS, Yoo SM (2021) Recent advances in tuning the expression and regulation of genes for constructing microbial cell factories. Biotechnol Adv 50:107767. https://doi.org/10.1016/j.biotechadv.2021.107767
Article
PubMed
CAS
Google Scholar
Kadisch M, Schmid A, Buhler B (2017) Hydrolase BioH knockout in E. coli enables efficient fatty acid methyl ester bioprocessing. J Ind Microbiol Biotechnol 44:339–351. https://doi.org/10.1007/s10295-016-1890-z
Article
PubMed
CAS
Google Scholar
Kan SBJ, Lewis RD, Chen K, Arnold FH (2016) Directed evolution of cytochrome c for carbon–silicon bond formation: bringing silicon to life. Science 354:1048–1051. https://doi.org/10.1126/science.aah6219
Article
PubMed
PubMed Central
CAS
Google Scholar
Kang W, Ma T, Liu M, Qu J, Liu Z, Zhang H et al (2019) Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux. Nat Commun 10:4248. https://doi.org/10.1038/s41467-019-12247-w
Article
PubMed
PubMed Central
CAS
Google Scholar
Kang MJ, Hong SJ, Yoo D, Cho BK, Lee H, Choi HK et al (2021) Photosynthetic production of biodiesel in Synechocystis sp. PCC6803 transformed with insect or plant fatty acid methyltransferase. Bioprocess Biosyst Eng 44:1433–1439. https://doi.org/10.1007/s00449-021-02520-y
Article
PubMed
CAS
Google Scholar
Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E (2021) Microbial production of advanced biofuels. Nat Rev Microbiol 19:701–715. https://doi.org/10.1038/s41579-021-00577-w
Article
PubMed
CAS
Google Scholar
Kim HM, Chae TU, Choi SY, Kim WJ, Lee SY (2019) Engineering of an oleaginous bacterium for the production of fatty acids and fuels. Nat Chem Biol 15:721–729. https://doi.org/10.1038/s41589-019-0295-5
Article
PubMed
CAS
Google Scholar
Kim G-U, Ha G-S, Kurade MB, Saha S, Khan MA, Park Y-K et al (2022a) Integrating fermentation of Chlamydomonas mexicana by oleaginous Lipomyces starkeyi and switchable ionic liquid extraction for enhanced biodiesel production. Chem Eng J 446:137285. https://doi.org/10.1016/j.cej.2022.137285
Article
CAS
Google Scholar
Kim JY, Jung J-M, Jung S, Park Y-K, Tsang YF, Lin K-YA et al (2022b) Biodiesel from microalgae: recent progress and key challenges. Prog Energy Combust Sci 93:101020. https://doi.org/10.1016/j.pecs.2022.101020
Article
Google Scholar
Ko YS, Kim JW, Lee JA, Han T, Kim GB, Park JE et al (2020) Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem Soc Rev 49:4615–4636. https://doi.org/10.1039/d0cs00155d
Article
PubMed
CAS
Google Scholar
Koch L (2021) CRISPR editing within microbial communities. Nat Rev Genet 23:72. https://doi.org/10.1038/s41576-021-00443-8
Article
PubMed Central
CAS
Google Scholar
Kolle JM, Fayaz M, Sayari A (2021) Understanding the effect of water on CO2 adsorption. Chem Rev 121:7280–7345. https://doi.org/10.1021/acs.chemrev.0c00762
Article
PubMed
CAS
Google Scholar
Koreti D, Kosre A, Jadhav SK, Chandrawanshi NK (2022) A comprehensive review on oleaginous bacteria: an alternative source for biodiesel production. Bioresour Bioprocess 9:1–19. https://doi.org/10.1186/s40643-022-00527-1
Article
Google Scholar
Krishnan A, McNeil BA, Stuart DT (2020) Biosynthesis of fatty alcohols in engineered microbial cell factories: advances and limitations. Front Bioeng Biotechnol 8:610936. https://doi.org/10.3389/fbioe.2020.610936
Article
PubMed
PubMed Central
Google Scholar
Kumar BR, Saravanan S (2016) Use of higher alcohol biofuels in diesel engines: a review. Renew Sust Energ Rev 60:84–115. https://doi.org/10.1016/j.rser.2016.01.085
Article
CAS
Google Scholar
Kumar M, Morya R, Gnansounou E, Larroche C, Thakur IS (2017) Characterization of carbon dioxide concentrating chemolithotrophic bacterium Serratia sp. ISTD04 for production of biodiesel. Bioresour Technol 243:893–897. https://doi.org/10.1016/j.biortech.2017.07.067
Article
PubMed
CAS
Google Scholar
Kumaravel V, Bartlett J, Pillai SC (2020) Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Lett 5:486–519. https://doi.org/10.1021/acsenergylett.9b02585
Article
CAS
Google Scholar
Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci U S A 109:6018–6023. https://doi.org/10.1073/pnas.1200074109
Article
PubMed
PubMed Central
Google Scholar
Lee HJ, Choi J, Lee SM, Um Y, Sim SJ, Kim Y et al (2017) Photosynthetic CO2 conversion to fatty acid ethyl esters (FAEEs) using engineered cyanobacteria. J Agric Food Chem 65:1087–1092. https://doi.org/10.1021/acs.jafc.7b00002
Article
PubMed
CAS
Google Scholar
Lee MJ, Mantell J, Hodgson L, Alibhai D, Fletcher JM, Brown IR et al (2018) Engineered synthetic scaffolds for organizing proteins within the bacterial cytoplasm. Nat Chem Biol 14:142–147. https://doi.org/10.1038/nchembio.2535
Article
PubMed
CAS
Google Scholar
Lee SY, Kim YS, Shin W-R, Yu J, Lee J, Lee S et al (2020) Non-photosynthetic CO2 bio-mitigation by Escherichia coliharbouring CBB genes. Green Chem 22:6889–6896. https://doi.org/10.1039/d0gc01820a
Article
CAS
Google Scholar
Li H, Opgenorth PH, Wernick DG, Rogers S, Wu T-Y, Higashide W et al (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596–1596. https://doi.org/10.1126/science.1217643
Article
PubMed
CAS
Google Scholar
Li D-W, Balamurugan S, Yang Y-F, Zheng J-W, Huang D, Zou L-G et al (2019) Transcriptional regulation of microalgae for concurrent lipid overproduction and secretion. Sci Adv. https://doi.org/10.1126/sciadv.aau3795
Article
PubMed
PubMed Central
Google Scholar
Li Z, Wu C, Gao X, Addison B, Shinde S, Wang X et al (2021) Exogenous electricity flowing through cyanobacterial photosystem I drives CO2 valorization with high energy efficiency. Energy Environ Sci 14:5480–5490. https://doi.org/10.1039/d1ee01526e
Article
CAS
Google Scholar
Li Y, Zhang S, Li Z, Zhang H, Li H, Yang S (2022a) Green synthesis of heterogeneous polymeric bio-based acid decorated with hydrophobic regulator for efficient catalytic production of biodiesel at low temperatures. Fuel 329:125467. https://doi.org/10.1016/j.fuel.2022.125467
Article
CAS
Google Scholar
Li Z, Yang S, Li H (2022b) Sustainable Catalyst-free N-formylation using CO2 as a Carbon Source. Curr Org Synth 19:187–196. https://doi.org/10.2174/1570179418666211022160149
Article
PubMed
CAS
Google Scholar
Liang B, Zhao Y, Yang J (2020a) Recent advances in developing artificial autotrophic microorganism for reinforcing CO2 fixation. Front Microbiol 11:592631. https://doi.org/10.3389/fmicb.2020.592631
Article
PubMed
PubMed Central
Google Scholar
Liang L, Liu R, Freed EF, Eckert CA (2020b) Synthetic biology and metabolic engineering employing Escherichia coli for C2–C6 bioalcohol production. Front Bioeng Biotechnol 8:710. https://doi.org/10.3389/fbioe.2020.00710
Article
PubMed
PubMed Central
Google Scholar
Liu L-N (2022) Advances in the bacterial organelles for CO2 fixation. Trends Microbiol 30:567–580. https://doi.org/10.1016/j.tim.2021.10.004
Article
PubMed
CAS
Google Scholar
Liu K, Li S (2020) Biosynthesis of fatty acid-derived hydrocarbons: perspectives on enzymology and enzyme engineering. Curr Opin Biotechnol 62:7–14. https://doi.org/10.1016/j.copbio.2019.07.005
Article
PubMed
CAS
Google Scholar
Liu P, Wang W, Wei D (2017) Use of transcription activator-like effector for efficient gene modification and transcription in the filamentous fungus Trichoderma reesei. J Ind Microbiol Biotechnol 44:1367–1373. https://doi.org/10.1007/s10295-017-1963-7
Article
PubMed
CAS
Google Scholar
Liu Z, Wang K, Chen Y, Tan T, Nielsen J (2020) Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat Catal 3:274–288. https://doi.org/10.1038/s41929-019-0421-5
Article
CAS
Google Scholar
Liu H, Qi Y, Zhou P, Ye C, Gao C, Chen X et al (2021a) Microbial physiological engineering increases the efficiency of microbial cell factories. Crit Rev Biotechnol 41:339–354. https://doi.org/10.1080/07388551.2020.1856770
Article
PubMed
CAS
Google Scholar
Liu Y, Cruz-Morales P, Zargar A, Belcher MS, Pang B, Englund E et al (2021b) Biofuels for a sustainable future. Cell 184:1636–1647. https://doi.org/10.1016/j.cell.2021.01.052
Article
PubMed
CAS
Google Scholar
Liu Z, Moradi H, Shi S, Darvishi F (2021c) Yeasts as microbial cell factories for sustainable production of biofuels. Renew Sust Energ Rev 143:110907. https://doi.org/10.1016/j.rser.2021.110907
Article
CAS
Google Scholar
Liu H, Zhou P, Qi M, Guo L, Gao C, Hu G et al (2022a) Enhancing biofuels production by engineering the actin cytoskeleton in Saccharomyces cerevisiae. Nat Commun 13:1886. https://doi.org/10.1038/s41467-022-29560-6
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu J, Wang X, Dai G, Zhang Y, Bian X (2022b) Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol Adv 59:107966. https://doi.org/10.1016/j.biotechadv.2022.107966
Article
PubMed
CAS
Google Scholar
Luan G, Qi Y, Wang M, Li Z, Duan Y, Tan X et al (2015) Combinatory strategy for characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell factories. Biotechnol Biofuels 8:184. https://doi.org/10.1186/s13068-015-0367-z
Article
PubMed
PubMed Central
CAS
Google Scholar
Luo R, Yang Y, Chen K, Liu X, Chen M, Xu W et al (2021) Tailored covalent organic frameworks for simultaneously capturing and converting CO2 into cyclic carbonates. J Mater Chem A 9:20941–20956. https://doi.org/10.1039/d1ta05428g
Article
CAS
Google Scholar
Ma Y, Gao Z, Wang Q, Liu Y (2018) Biodiesels from microbial oils: opportunity and challenges. Bioresour Technol 263:631–641. https://doi.org/10.1016/j.biortech.2018.05.028
Article
PubMed
CAS
Google Scholar
Ma W, Xie S, Zhang XG, Sun F, Kang J, Jiang Z et al (2019) Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat Commun 10:892. https://doi.org/10.1038/s41467-019-08805-x
Article
PubMed
PubMed Central
CAS
Google Scholar
Maheshwari N, Kumar M, Thakur IS, Srivastava S (2018) Carbon dioxide biofixation by free air CO2 enriched (FACE) bacterium for biodiesel production. J CO2 Util 27:423–432. https://doi.org/10.1016/j.jcou.2018.08.010
Article
CAS
Google Scholar
Malik S, Shahid A, Betenbaugh MJ, Liu C-G, Mehmood MA (2022) A novel wastewater-derived cascading algal biorefinery route for complete valorization of the biomass to biodiesel and value-added bioproducts. Energy Convers Manage 256:115360. https://doi.org/10.1016/j.enconman.2022.115360
Article
CAS
Google Scholar
Manish K, Smita S, Gnansounou E, Christian L, Thakur IS (2018) Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: a review. Bioresour Technol 247:1059–1068. https://doi.org/10.1016/j.biortech.2017.09.050
Article
CAS
Google Scholar
Meng X, Liu L, Chen X (2022) Bacterial photosynthesis: state-of-the-art in light-driven carbon fixation in engineered bacteria. Curr Opin Microbiol 69:102174. https://doi.org/10.1016/j.mib.2022.102174
Article
PubMed
CAS
Google Scholar
Mhatre A, Kalscheur B, McKeown H, Bhakta K, Sarnaik AP, Flores A et al (2022) Consolidated bioprocessing of hemicellulose to fuels and chemicals through an engineered Bacillus subtilis-Escherichia coli consortium. Renew Energy 193:288–298. https://doi.org/10.1016/j.renene.2022.04.124
Article
CAS
Google Scholar
Mochdia K, Tamaki S (2021) Transcription factor-based genetic engineering in microalgae. Plants (basel) 10:1602. https://doi.org/10.3390/plants10081602
Article
PubMed
CAS
Google Scholar
Mukherjee M, Misra S (2018) A review of experimental research on enhanced coal bed methane (ECBM) recovery via CO2 sequestration. Earth Sci Rev 179:392–410. https://doi.org/10.1016/j.earscirev.2018.02.018
Article
CAS
Google Scholar
Munkajohnpong P, Kesornpun C, Buttranon S, Jaroensuk J, Weeranoppanant N, Chaiyen P (2020) Fatty alcohol production: an opportunity of bioprocess. Biofuels, Bioprod Biorefin 14:986–1009. https://doi.org/10.1002/bbb.2112
Article
CAS
Google Scholar
Nisar A, Khan S, Hameed M, Nisar A, Ahmad H, Mehmood SA (2021) Bio-conversion of CO2 into biofuels and other value-added chemicals via metabolic engineering. Microbiol Res 251:126813. https://doi.org/10.1016/j.micres.2021.126813
Article
PubMed
CAS
Google Scholar
Nitsos C, Filali R, Taidi B, Lemaire J (2020) Current and novel approaches to downstream processing of microalgae: a review. Biotechnol Adv 45:107650. https://doi.org/10.1016/j.biotechadv.2020.107650
Article
PubMed
CAS
Google Scholar
Nocito F, Dibenedetto A (2020) Atmospheric CO2 mitigation technologies: carbon capture utilization and storage. Curr Opin Green Sustainable Chem 21:34–43. https://doi.org/10.1016/j.cogsc.2019.10.002
Article
Google Scholar
Onyeaka H, Ekwebelem OC (2022) A review of recent advances in engineering bacteria for enhanced CO2 capture and utilization. Int J Environ Sci Technol (tehran) 19:1–14. https://doi.org/10.1007/s13762-022-04303-8
Article
Google Scholar
Pal P, Chew KW, Yen H-W, Lim JW, Lam MK, Show PL (2019) Cultivation of oily microalgae for the production of third-generation biofuels. Sustainability 11:5424. https://doi.org/10.3390/su11195424
Article
CAS
Google Scholar
Pan H, Xia Q, Li H, Wang Y, Shen Z, Wang Y et al (2022) Direct production of biodiesel from crude Euphorbia lathyris L. Oil catalyzed by multifunctional mesoporous composite materials. Fuel 309:122172. https://doi.org/10.1016/j.fuel.2021.122172
Article
CAS
Google Scholar
Panich J, Fong B, Singer SW (2021) Metabolic engineering of Cupriavidus necator H16 for sustainable biofuels from CO2. Trends Biotechnol 39:412–424. https://doi.org/10.1016/j.tibtech.2021.01.001
Paschon DE, Lussier S, Wangzor T, Xia DF, Li PW, Hinkley SJ et al (2019) Diversifying the structure of zinc finger nucleases for high-precision genome editing. Nat Commun 10:1133. https://doi.org/10.1038/s41467-019-08867-x
Article
PubMed
PubMed Central
CAS
Google Scholar
Patrón GD, Ricardez-Sandoval L (2022) An integrated real-time optimization, control, and estimation scheme for post-combustion CO2 capture. Appl Energy 308:118302. https://doi.org/10.1016/j.apenergy.2021.118302
Article
CAS
Google Scholar
Peng L, Fu D, Chu H, Wang Z, Qi H (2019) Biofuel production from microalgae: a review. Environ Chem Lett 18:285–297. https://doi.org/10.1007/s10311-019-00939-0
Article
CAS
Google Scholar
Qin Q, Ling C, Zhao Y, Yang T, Yin J, Guo Y et al (2018) CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metab Eng 47:219–229. https://doi.org/10.1016/j.ymben.2018.03.018
Article
PubMed
CAS
Google Scholar
Quinn L, Armshaw P, Soulimane T, Sheehan C, Ryan MP, Pembroke JT (2019) Zymobacter palmae pyruvate decarboxylase is less effective than that of Zymomonas mobilis for ethanol production in metabolically engineered synechocystis sp. PCC6803. Microorganisms 7:494. https://doi.org/10.3390/microorganisms7110494
Article
PubMed
PubMed Central
CAS
Google Scholar
Rahman Z, Sung BH, Nawab J, Siddiqui MF, Ali A, Geraldi A et al (2019) Enhanced production of fatty acid ethyl ester with engineered fabHDG Operon in Escherichia coli. Microorganisms 7:552. https://doi.org/10.3390/microorganisms7110552
Article
PubMed
PubMed Central
CAS
Google Scholar
Rathnaweera TD, Ranjith PG (2020) Nano-modified CO2 for enhanced deep saline CO2 sequestration: a review and perspective study. Earth Sci Rev 200:103035. https://doi.org/10.1016/j.earscirev.2019.103035
Article
CAS
Google Scholar
Ravanipour M, Hamidi A, Mahvi AH (2021) Microalgae biodiesel: a systematic review in Iran. Renew Sust Energ Rev 150:111426. https://doi.org/10.1016/j.rser.2021.111426
Article
CAS
Google Scholar
Riaz I, Shafiq I, Jamil F, Al-Muhtaseb AA, Akhter P, Shafique S et al (2022) A review on catalysts of biodiesel (methyl esters) production. Catalysis Rev 61:1–53. https://doi.org/10.1080/01614940.2022.2108197
Article
CAS
Google Scholar
Rodríguez-Palacio MC, Cabrera-Cruz RBE, Rolón-Aguilar JC, Tobías-Jaramillo R, Martínez-Hernández M, Lozano-Ramírez C (2022) The cultivation of five microalgae species and their potential for biodiesel production. Energ Sustain Soc 12:10. https://doi.org/10.1186/s13705-022-00337-5
Article
Google Scholar
Roussanaly S, Vitvarova M, Anantharaman R, Berstad D, Hagen B, Jakobsen J et al (2019) Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC. Front Chem Sci Eng 14:436–452. https://doi.org/10.1007/s11705-019-1870-8
Article
CAS
Google Scholar
Salehizadeh H, Yan N, Farnood R (2020) Recent advances in microbial CO2 fixation and conversion to value-added products. Chem Eng J 390:124584. https://doi.org/10.1016/j.cej.2020.124584
Article
CAS
Google Scholar
Sanchez LRJ, Claus S, Muth LT, Salvador Lopez JM, Van Bogaert I (2022) Force in numbers: high-throughput screening approaches to unlock microbial transport. Curr Opin Biotechnol 74:204–210. https://doi.org/10.1016/j.copbio.2021.11.012
Article
CAS
Google Scholar
Sanchez-Andrea I, Guedes IA, Hornung B, Boeren S, Lawson CE, Sousa DZ et al (2020) The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nat Commun 11:5090. https://doi.org/10.1038/s41467-020-18906-7
Article
PubMed
PubMed Central
CAS
Google Scholar
Santos-Merino M, Garcillan-Barcia MP, de la Cruz F (2018) Engineering the fatty acid synthesis pathway in Synechococcus elongatus PCC 7942 improves omega-3 fatty acid production. Biotechnol Biofuels 11:239. https://doi.org/10.1186/s13068-018-1243-4
Article
PubMed
PubMed Central
CAS
Google Scholar
Sarnaik A, Liu A, Nielsen D, Varman AM (2020) High-throughput screening for efficient microbial biotechnology. Curr Opin Biotechnol 64:141–150. https://doi.org/10.1016/j.copbio.2020.02.019
Article
PubMed
CAS
Google Scholar
Sarwar A, Nguyen LT, Lee EY (2022) Bio-upgrading of ethanol to fatty acid ethyl esters by metabolic engineering of Pseudomonas putida KT2440. Bioresour Technol 350:126899. https://doi.org/10.1016/j.biortech.2022.126899
Article
PubMed
CAS
Google Scholar
Schmidl SR, Ekness F, Sofjan K, Daeffler KN, Brink KR, Landry BP et al (2019) Rewiring bacterial two-component systems by modular DNA-binding domain swapping. Nat Chem Biol 15:690–698. https://doi.org/10.1038/s41589-019-0286-6
Article
PubMed
CAS
Google Scholar
Schwander T, von Borzyskowski LS, Burgener S, Cortina NS, Erb TJ (2016) A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354:900–904. https://doi.org/10.1126/science.aah5237
Article
PubMed
PubMed Central
CAS
Google Scholar
Shen R, Yin J, Ye JW, Xiang RJ, Ning ZY, Huang WZ et al (2018) Promoter engineering for enhanced P(3HB- co-4HB) production by Halomonas bluephagenesis. ACS Synth Biol 7:1897–1906. https://doi.org/10.1021/acssynbio.8b00102
Article
PubMed
CAS
Google Scholar
Shi X, Xiao H, Azarabadi H, Song J, Wu X, Chen X et al (2020) Sorbents for the direct capture of CO2 from ambient air. Angew Chem Int Ed Engl 59:6984–7006. https://doi.org/10.1002/anie.201906756
Article
PubMed
CAS
Google Scholar
Smith AR, Kieft B, Mueller R, Fisk MR, Mason OU, Popa R et al (2019) Carbon fixation and energy metabolisms of a subseafloor olivine biofilm. ISME J 13:1737–1749. https://doi.org/10.1038/s41396-019-0385-0
Article
PubMed
PubMed Central
CAS
Google Scholar
Srivastava A, Summers ML, Sobotka R (2020) Cyanobacterial sigma factors: Current and future applications for biotechnological advances. Biotechnol Adv 40:107517. https://doi.org/10.1016/j.biotechadv.2020.107517
Article
PubMed
CAS
Google Scholar
Su H, Lin J, Tan F (2017) Progress and perspective of biosynthetic platform for higher-order biofuels. Renew Sust Energ Rev 80:801–826. https://doi.org/10.1016/j.rser.2017.05.158
Article
Google Scholar
Sullivan I, Goryachev A, Digdaya IA, Li X, Atwater HA, Vermaas DA et al (2021) Coupling electrochemical CO2 conversion with CO2 capture. Nat Catal 4:952–958. https://doi.org/10.1038/s41929-021-00699-7
Article
CAS
Google Scholar
Szambelan K, Szwengiel A, Nowak J, Jeleń H, Frankowski J (2022) Low-waste technology for the production of bioethanol from sorghum grain: comparison of Zymomonas mobilis and Saccharomyces cerevisiae in fermentation with stillage reusing. J Cleaner Prod 352:131607. https://doi.org/10.1016/j.jclepro.2022.131607
Article
CAS
Google Scholar
Tan X, Zhang H, Li H, Yang S (2022) Electrovalent bifunctional acid enables heterogeneously catalytic production of biodiesel by (trans)esterification of non-edible oils. Fuel 310:122273. https://doi.org/10.1016/j.fuel.2021.122273
Article
CAS
Google Scholar
Taparia T, Mvss M, Mehrotra R, Shukla P, Mehrotra S (2016) Developments and challenges in biodiesel production from microalgae: a review. Biotechnol Appl Biochem 63:715–726. https://doi.org/10.1002/bab.1412
Article
PubMed
CAS
Google Scholar
Thakur IS, Kumar M, Varjani SJ, Wu Y, Gnansounou E, Ravindran S (2018) Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: opportunities and challenges. Bioresour Technol 256:478–490. https://doi.org/10.1016/j.biortech.2018.02.039
Article
PubMed
CAS
Google Scholar
Van Der Hoek SA, Borodina I (2020) Transporter engineering in microbial cell factories: the ins, the outs, and the in-betweens. Curr Opin Biotechnol 66:186–194. https://doi.org/10.1016/j.copbio.2020.08.002
Article
PubMed
PubMed Central
CAS
Google Scholar
Vitillo JG, Smit B, Gagliardi L (2017) Introduction: carbon capture and separation. Chem Rev 117:9521–9523. https://doi.org/10.1021/acs.chemrev.7b00403
Article
PubMed
CAS
Google Scholar
Vuong P, Wise MJ, Whiteley AS, Kaur P (2022) Small investments with big returns: environmental genomic bioprospecting of microbial life. Crit Rev Microbiol 48:1–15. https://doi.org/10.1080/1040841X.2021.2011833
Article
Google Scholar
Wang L, Chen L, Yang S, Tan X (2020a) Photosynthetic conversion of carbon dioxide to oleochemicals by cyanobacteria: recent advances and future perspectives. Front Microbiol 11:634. https://doi.org/10.3389/fmicb.2020.00634
Article
PubMed
PubMed Central
Google Scholar
Wang T, Liang C, Xing W, Wu W, Hou Y, Zhang L et al (2020b) Transcriptional factor engineering in microbes for industrial biotechnology. J Chem Technol Biotechnol 95:3071–3078. https://doi.org/10.1002/jctb.6512
Article
CAS
Google Scholar
Wang H, Peng X, Zhang H, Yang S, Li H (2021a) Microorganisms-promoted biodiesel production from biomass: a review. Energy Convers Manag: X 12:100137. https://doi.org/10.1016/j.ecmx.2021.100137
Article
CAS
Google Scholar
Wang Y, Liu Y, Zheng P, Sun J, Wang M (2021b) Microbial base editing: a powerful emerging technology for microbial genome engineering. Trends Biotechnol 39:165–180. https://doi.org/10.1016/j.tibtech.2020.06.010
Article
PubMed
CAS
Google Scholar
Wang Y, Chen E, Tang J (2022) Insight on reaction pathways of photocatalytic CO2 conversion. ACS Catal 12:7300–7316. https://doi.org/10.1021/acscatal.2c01012
Article
PubMed
PubMed Central
CAS
Google Scholar
Warner JR, Reeder PJ, Karimpour-Fard A, Woodruff LB, Gill RT (2010) Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 28:856–862. https://doi.org/10.1038/nbt.1653
Article
PubMed
CAS
Google Scholar
Wei L, Hajjami ME, Shen C, You W, Lu Y, Li J et al (2019) Transcriptomic and proteomic responses to very low CO2 suggest multiple carbon concentrating mechanisms in Nannochloropsis oceanica. Biotechnol Biofuels 12:168. https://doi.org/10.1186/s13068-019-1506-8
Article
PubMed
PubMed Central
CAS
Google Scholar
Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799. https://doi.org/10.1126/science.1189003
Article
PubMed
CAS
Google Scholar
Woo HM (2017) Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganisms. Curr Opin Biotechnol 45:1–7. https://doi.org/10.1016/j.copbio.2016.11.017
Article
PubMed
CAS
Google Scholar
Wu Y (2021) Bicarbonate use and carbon dioxide concentrating mechanisms in photosynthetic organisms. Acta Geochimica 40:846–853. https://doi.org/10.1007/s11631-021-00488-w
Article
CAS
Google Scholar
Wu YA, McNulty I, Liu C, Lau KC, Liu Q, Paulikas AP et al (2019) Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat Energy 4:957–968. https://doi.org/10.1038/s41560-019-0490-3
Article
CAS
Google Scholar
Wu H, Dai W, Saravanamurugan S, Li H, Yang S (2020) Endogenous X-C=O species enable catalyst-free formylation prerequisite for CO2 reductive upgrading. Green Chem 22:5822–5832. https://doi.org/10.1039/d0gc02142c
Article
CAS
Google Scholar
Wu XX, Li JW, Xing SF, Chen HT, Song C, Wang SG et al (2021) Establishment of a resource recycling strategy by optimizing isobutanol production in engineered cyanobacteria using high salinity stress. Biotechnol Biofuels 14:174. https://doi.org/10.1186/s13068-021-02023-8
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie D (2017) Integrating cellular and bioprocess engineering in the non-conventional yeast Yarrowia lipolytica for biodiesel production: a review. Front Bioeng Biotechnol 5:65. https://doi.org/10.3389/fbioe.2017.00065
Article
PubMed
PubMed Central
Google Scholar
Xu J, Wang Z, Qiao Z, Wu H, Dong S, Zhao S et al (2019) Post-combustion CO2 capture with membrane process: practical membrane performance and appropriate pressure. J Membr Sci 581:195–213. https://doi.org/10.1016/j.memsci.2019.03.052
Article
CAS
Google Scholar
Xu N, Liu Y, Jiang H, Liu J, Ma Y (2020) Combining protein and metabolic engineering to construct efficient microbial cell factories. Curr Opin Biotechnol 66:27–35. https://doi.org/10.1016/j.copbio.2020.06.001
Article
PubMed
CAS
Google Scholar
Xu Y, Huang H, Lu H, Wu M, Lin M, Zhang C et al (2021) Characterization of an Aspergillus niger for efficient fatty acid ethyl ester synthesis in aqueous phase and the molecular mechanism. Front Microbiol 12:820380. https://doi.org/10.3389/fmicb.2021.820380
Article
PubMed
Google Scholar
Yan X, Wang X, Yang Y, Wang Z, Zhang H, Li Y et al (2022) Cysteine supplementation enhanced inhibitor tolerance of Zymomonas mobilis for economic lignocellulosic bioethanol production. Bioresour Technol 349:126878. https://doi.org/10.1016/j.biortech.2022.126878
Article
PubMed
CAS
Google Scholar
Yang N, Tian Y, Zhang M, Peng X, Li F, Li J et al (2022) Photocatalyst-enzyme hybrid systems for light-driven biotransformation. Biotechnol Adv 54:107808. https://doi.org/10.1016/j.biotechadv.2021.107808
Article
PubMed
CAS
Google Scholar
Yeom J, Park JS, Jung SW, Lee S, Kwon H, Yoo SM (2021) High-throughput genetic engineering tools for regulating gene expression in a microbial cell factory. Crit Rev Biotechnol 41:1–18. https://doi.org/10.1080/07388551.2021.2007351
Article
CAS
Google Scholar
Yu A, Xie Y, Pan X, Zhang H, Cao P, Su X et al (2020) Photosynthetic phosphoribulokinase structures: enzymatic mechanisms and the redox regulation of the calvin-benson-bassham cycle. Plant Cell 32:1556–1573. https://doi.org/10.1105/tpc.19.00642
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu W, Cao X, Gao J, Zhou YJ (2022) Overproduction of 3-hydroxypropionate in a super yeast chassis. Bioresour Technol 361:127690. https://doi.org/10.1016/j.biortech.2022.127690
Article
PubMed
CAS
Google Scholar
Yunus IS, Palma A, Trudeau DL, Tawfik DS, Jones PR (2020) Methanol-free biosynthesis of fatty acid methyl ester (FAME) in Synechocystis sp. PCC 6803. Metab Eng 57:217–227. https://doi.org/10.1016/j.ymben.2019.12.001
Article
PubMed
CAS
Google Scholar
Zarska M, Zorębski M, Dzida M (2022) High pressure thermophysical characteristics of butyl caprate and butyl laurate as fully biorenewable components of biodiesel fuel. Fuel 323:124274. https://doi.org/10.1016/j.fuel.2022.124274
Article
CAS
Google Scholar
Zeng W, Guo L, Xu S, Chen J, Zhou J (2020) High-throughput screening technology in industrial biotechnology. Trends Biotechnol 38:888–906. https://doi.org/10.1016/j.tibtech.2020.01.001
Article
PubMed
CAS
Google Scholar
Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359. https://doi.org/10.1038/nbt.2149
Article
PubMed
CAS
Google Scholar
Zhang S, Shen Y, Wang L, Chen J, Lu Y (2019) Phase change solvents for post-combustion CO2 capture: principle, advances, and challenges. Appl Energy 239:876–897. https://doi.org/10.1016/j.apenergy.2019.01.242
Article
CAS
Google Scholar
Zhang S, Zhuang Y, Liu L, Zhang L, Du J (2020a) Optimization-based approach for CO2 utilization in carbon capture, utilization and storage supply chain. Comput Chem Eng 139:106885. https://doi.org/10.1016/j.compchemeng.2020.106885
Article
CAS
Google Scholar
Zhang Z, Borhani TN, Olabi AG (2020b) Status and perspective of CO2 absorption process. Energy 205:118057. https://doi.org/10.1016/j.energy.2020.118057
Article
CAS
Google Scholar
Zhang Y, Peng J, Zhao H, Shi S (2021) Engineering oleaginous yeast Rhodotorula toruloides for overproduction of fatty acid ethyl esters. Biotechnol Biofuels 14:115. https://doi.org/10.1186/s13068-021-01965-3
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao W, Li H, Li Y, Long J, Xu Y, Yang S (2020) Low-cost acetate-catalyzed efficient synthesis of benzimidazoles using ambient CO2 as a carbon source under mild conditions. Sustain Chem Pharm 17:100276. https://doi.org/10.1016/j.scp.2020.100276
Article
Google Scholar
Zhao W, Yan J, Gao S, Lee TH, Li X (2022) The combustion and emission characteristics of a common-rail diesel engine fueled with diesel and higher alcohols blends with a high blend ratio. Energy 261:124972. https://doi.org/10.1016/j.energy.2022.124972
Article
CAS
Google Scholar
Zheng G, Cui Y, Lu L, Guo M, Hu X, Wang L et al (2022) Microfluidic chemostatic bioreactor for high-throughput screening and sustainable co-harvesting of biomass and biodiesel in microalgae. Bioact Mater. https://doi.org/10.1016/j.bioactmat.2022.07.012
Article
PubMed
PubMed Central
Google Scholar
Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J (2016) Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 7:11709. https://doi.org/10.1038/ncomms11709
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou YJ, Kerkhoven EJ, Nielsen J (2018) Barriers and opportunities in bio-based production of hydrocarbons. Nat Energy 3:925–935. https://doi.org/10.1038/s41560-018-0197-x
Article
CAS
Google Scholar
Zhuang X, Zhang Y, Xiao AF, Zhang A, Fang B (2022a) Applications of synthetic biotechnology on carbon neutrality research: a review on electrically driven microbial and enzyme engineering. Front Bioeng Biotechnol 10:826008. https://doi.org/10.3389/fbioe.2022.826008
Article
PubMed
PubMed Central
Google Scholar
Zhuang XY, Li B, Huang BC, Wang FB, Zhang YQ, Zhao SG et al (2022b) Production, biosynthesis, and commercial applications of fatty acids from oleaginous fungi. Front Nutr 9:873657. https://doi.org/10.3389/fnut.2022.873657
Article
CAS
Google Scholar
Zhuang XY, Zhang YH, Xiao AF, Zhang AH, Fang BS (2022c) Key enzymes in fatty acid synthesis pathway for bioactive lipids biosynthesis. Front Nutr 9:851402. https://doi.org/10.3389/fnut.2022.851402
Article
PubMed
PubMed Central
CAS
Google Scholar