Adekunle A, Orsat V, Raghavan V (2016) Lignocellulosic bioethanol: a review and design conceptualization study of production from cassava peels. Renew Sustain Energy Rev 64:518–530. https://doi.org/10.1016/j.rser.2016.06.064
Article
CAS
Google Scholar
Alves TC, Cabrera-Codony A, Barceló D, Rodriguez-Mozaz S, Pinheiro A, Gonzalez-Olmos R (2018) Influencing factors on the removal of pharmaceuticals from water with micro-grain activated carbon. Water Res 144:402–412. https://doi.org/10.1016/J.WATRES.2018.07.037
Article
CAS
PubMed
Google Scholar
Astuti W, Hidayah M, Fitriana L, Mahardhika MA, Irchamsyah EF (2020) Preparation of activated carbon from cassava peel by microwave-induced H3PO4 activation for naphthol blue-black removal. In: AIP conference proceedings, 2243(June). https://doi.org/10.1063/5.0001464
Barskov S, Zappi M, Buchireddy P, Dufreche S, Guillory J, Gang D et al (2019) Torrefaction of biomass: a review of production methods for biocoal from cultured and waste lignocellulosic feedstocks. Renew Energy 142:624–642. https://doi.org/10.1016/j.renene.2019.04.068
Article
CAS
Google Scholar
Beakou BH, El Hassani K, Houssaini MA, Belbahloul M, Oukani E, Anouar A (2017) Novel activated carbon from Manihot esculenta Crantz for removal of methylene blue. Sustain Environ Res 27(5):215–222. https://doi.org/10.1016/J.SERJ.2017.06.003
Article
CAS
Google Scholar
Belcaid A, Beakou BH, El Hassani K, Bouhsina S, Anouar A (2020) Efficient removal of Cr (VI) and Co (II) from aqueous solution by activated carbon from Manihot esculenta Crantz agricultural bio-waste. Water Sci Technol. https://doi.org/10.2166/wst.2020.585
Article
Google Scholar
Bhatnagar A, Sillanpää M, Witek-Krowiak A (2015) Agricultural waste peels as versatile biomass for water purification—a review. Chem Eng J 270:244–271. https://doi.org/10.1016/j.cej.2015.01.135
Article
CAS
Google Scholar
Casco ME, Martínez-Escandell M, Kaneko K, Silvestre-Albero J, Rodríguez-Reinoso F (2015) Very high methane uptake on activated carbons prepared from mesophase pitch: a compromise between microporosity and bulk density. Carbon 93:11–21. https://doi.org/10.1016/j.carbon.2015.05.029
Article
CAS
Google Scholar
Daifullah AAM, Girgis BS, Gad HMH (2004) A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. Colloids Surf A 235(1–3):1–10. https://doi.org/10.1016/j.colsurfa.2003.12.020
Article
CAS
Google Scholar
Daud WMAW, Ali WSW (2004) Comparison on pore development of activated carbon produced from palm shell and coconut shell. Biores Technol 93(1):63–69. https://doi.org/10.1016/j.biortech.2003.09.015
Article
CAS
Google Scholar
Ekebafe LO, Imanah JE, Okieimen FE (2012) Effect of carbonization on the processing characteristics of rubber seed shell. Arab J Chem 10:S174–S178. https://doi.org/10.1016/j.arabjc.2012.07.018
Article
CAS
Google Scholar
Gani A, Naruse I (2007) Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energy 32(4):649–661. https://doi.org/10.1016/j.renene.2006.02.017
Article
CAS
Google Scholar
Gergova K, Petrov N, Minkova V (1993) A comparison of adsorption characteristics of various activated carbons. J Chem Technol Biotechnol 56(1):77–82. https://doi.org/10.1002/jctb.280560114
Article
CAS
Google Scholar
González-García P (2018) Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew Sustain Energy Rev 82:1393–1414. https://doi.org/10.1016/j.rser.2017.04.117
Article
CAS
Google Scholar
Gratuito MKB, Panyathanmaporn T, Chumnanklang RA, Sirinuntawittaya N, Dutta A (2008) Production of activated carbon from coconut shell: optimization using response surface methodology. Biores Technol 99(11):4887–4895. https://doi.org/10.1016/j.biortech.2007.09.042
Article
CAS
Google Scholar
He X, Ling P, Qiu J, Yu M, Zhang X, Yu C, Zheng M (2013) Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density. J Power Sources 240:109–113. https://doi.org/10.1016/j.jpowsour.2013.03.174
Article
CAS
Google Scholar
Huang Y, Zhao G (2016) Preparation and characterization of activated carbon fibers from liquefied wood by KOH activation. Holzforschung 70(3):195–202. https://doi.org/10.1515/hf-2015-0051
Article
CAS
Google Scholar
Ibeh PO, García-Mateos FJ, Rosas JM, Rodríguez-Mirasol J, Cordero T (2019) Activated carbon monoliths from lignocellulosic biomass waste for electrochemical applications. J Taiwan Inst Chem Eng 97:480–488. https://doi.org/10.1016/j.jtice.2019.02.019
Article
CAS
Google Scholar
Idress M, Shahril MA, Zuraidin AS, Jasamai M (2019) Experimental investigation of methane hydrate induction time in the presence of cassava peel as a hydrate inhibitor. Energies 12(12):1–11. https://doi.org/10.3390/en12122314
Article
CAS
Google Scholar
Ismanto AE, Wang S, Soetaredjo FE, Ismadji S (2010) Preparation of capacitor’s electrode from cassava peel waste. Biores Technol 101(10):3534–3540. https://doi.org/10.1016/j.biortech.2009.12.123
Article
CAS
Google Scholar
Kalderis D, Bethanis S, Paraskeva P, Diamadopoulos E (2008) Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Biores Technol 99(15):6809–6816. https://doi.org/10.1016/j.biortech.2008.01.041
Article
CAS
Google Scholar
Kayiwa R, Kasedde H, Lubwama M, Kirabira JB (2021) Characterization and pre-leaching effect on the peels of predominant cassava varieties in Uganda for production of activated carbon. Curr Res Green Sustain Chem. https://doi.org/10.1016/j.crgsc.2021.100083
Article
Google Scholar
Kwiatkowski M, Broniek E (2017) An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation. Colloids Surf A 529:443–453. https://doi.org/10.1016/j.colsurfa.2017.06.028
Article
CAS
Google Scholar
Laine J, Yunes S (1992) Effect of the preparation method on the pore size distribution of activated carbon from coconut shell. Carbon 30(4):601–604. https://doi.org/10.1016/0008-6223(92)90178-Y
Article
CAS
Google Scholar
Li W, Yang K, Peng J, Zhang L, Guo S, Xia H (2008) Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind Crops Prod 28(2):190–198. https://doi.org/10.1016/j.indcrop.2008.02.012
Article
CAS
Google Scholar
Liu J, Sun N, Sun C, Liu H, Snape C, Li K et al (2015) Spherical potassium intercalated activated carbon beads for pulverised fuel CO2 post-combustion capture. Carbon 94:243–255. https://doi.org/10.1016/j.carbon.2015.06.036
Article
CAS
Google Scholar
Liu J, Liu X, Sun Y, Sun C, Liu H, Stevens LA et al (2018) High density and super ultra-microporous-activated carbon macrospheres with high volumetric capacity for CO2 capture. Adv Sustain Syst 2(2):1700115. https://doi.org/10.1002/adsu.201700115
Article
CAS
Google Scholar
Lozano-Castelló D, Calo JM, Cazorla-Amorós D, Linares-Solano A (2007) Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon 45(13):2529–2536. https://doi.org/10.1016/j.carbon.2007.08.021
Article
CAS
Google Scholar
Lu Y, Zhang S, Yin J, Bai C, Zhang J, Li Y et al (2017) Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors. Carbon 124:64–71. https://doi.org/10.1016/j.carbon.2017.08.044
Article
CAS
Google Scholar
Menya E, Olupot PW, Storz H, Lubwama M, Kiros Y (2018) Characterization and alkaline pretreatment of rice husk varieties in Uganda for potential utilization as precursors in the production of activated carbon and other value-added products. Waste Manage 81:104–116. https://doi.org/10.1016/j.wasman.2018.09.050
Article
CAS
Google Scholar
Mohd-Asharuddin S, Othman N, Mohd Zin NS, Tajarudin HA (2017) A chemical and morphological study of cassava peel: a potential waste as coagulant aid. In: MATEC web of conferences, vol 103. https://doi.org/10.1051/matecconf/201710306012
Molina-Sabio M, Rodríguez-Reinoso F (2004) Role of chemical activation in the development of carbon porosity. Colloids Surf A 241(1–3):15–25. https://doi.org/10.1016/j.colsurfa.2004.04.007
Article
CAS
Google Scholar
Mopoung S, Moonsri P, Palas W, Khumpai S (2015) Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe(III) adsorption from aqueous solution. Sci World J. https://doi.org/10.1155/2015/415961
Article
Google Scholar
Moreno-Piraján JC, Giraldo L (2010) Study of activated carbons by pyrolysis of cassava peel in the presence of chloride zinc. J Anal Appl Pyrol 87(2):288–290. https://doi.org/10.1016/j.jaap.2009.12.003
Article
CAS
Google Scholar
Mukiibi DR, Alicai T, Kawuki R, Okao-Okuja G, Tairo F, Sseruwagi P et al (2019) Resistance of advanced cassava breeding clones to infection by major viruses in Uganda. Crop Prot 115:104–112. https://doi.org/10.1016/j.cropro.2018.09.015
Article
PubMed
PubMed Central
Google Scholar
Ndongo GK, Nsami NJ, Mbadcam KJ (2020) Ferromagnetic activated carbon from cassava (Manihot dulcis) peels activated by iron(lll) chloride: synthesis and characterization. BioResources 15(2):2133–2146. https://doi.org/10.15376/biores.15.2.2133-2146
Article
CAS
Google Scholar
Nwabanne JT, Igbokwe PK (2008) Kinetics and equilibrium modeling of nickel adsorption by cassava peel. J Eng Appl Sci 3(11):829–834
CAS
Google Scholar
Okudoh V, Trois C, Workneh T, Schmidt S (2014) The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: a review. Renew Sustain Energy Rev 39:1035–1052. https://doi.org/10.1016/j.rser.2014.07.142
Article
Google Scholar
Omotosho O, Amori A (2016) Effect of zinc chloride activation on physicochemical characteristics of cassava peel and waste bamboo activated carbon. Int J Chem Mol Eng 6:815–820
Google Scholar
Omotosho OA, Sangodoyin AY (2013) Production and utilization of cassava peel activated carbon in treatment of effluent from cassava processing industry. Water Pract Technol 8(2):215–224. https://doi.org/10.2166/wpt.2013.023
Article
Google Scholar
Parvathi C, Shoba US, Prakash C, Sivamani S (2018) Manihot esculenta peel powder: effective adsorbent for removal of various textile dyes from aqueous solutions. J Test Eval 46(6):20170160. https://doi.org/10.1520/jte20170160
Article
CAS
Google Scholar
Rachman RA, Tri U, Martia I, Pambudi AB, Jovita S, Kurniawan F (2017) Cassava peel biosorbent (manihot utilissima ) for removal chromium (Vi) with microbial fuel cell system of combination techniques. Proc Int Conf Green Technol 8(1):235–239
Google Scholar
Rodriguez-Reinoso F (2002) Carbons. In: Schuth F, Sing KS, Weitkamp J (eds) Handbbok of porous solids, 69469, vol 3. Wiley-VCH Verlag GmbH, Weinheim, pp 1766–1827
Chapter
Google Scholar
Rodríguez-Reinoso F (2006) Porous carbons in gas separation and storage. In: Loureiro JM, Kartel MT (eds) Combined and hybrid adsorbents. Springer, Dordrecht, pp 133–144. https://doi.org/10.1007/1-4020-5172-7_15
Chapter
Google Scholar
Saka C (2012) BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J Anal Appl Pyrol 95:21–24. https://doi.org/10.1016/j.jaap.2011.12.020
Article
CAS
Google Scholar
Salahudeen N, Ajinomoh C, Omaga S, Akpaka C (2014) Production of activated carbon from cassava. J Appl Phytotechnol Environ Sanit 3(2):75–80
CAS
Google Scholar
Santos VLF, Ferreira MA, Siqueira MCB, Melo TTB, Silva JL, Andrade IB et al (2015) Rumen parameters of sheep fed cassava peel as a replacement for corn. Small Rumin Res 133:88–92. https://doi.org/10.1016/j.smallrumres.2015.09.010
Article
Google Scholar
Savova D, Apak E, Ekinci E, Yardim F, Petrov N, Budinova T et al (2001) Biomass conversion to carbon adsorbents and gas. Biomass Bioenerg 21(2):133–142. https://doi.org/10.1016/S0961-9534(01)00027-7
Article
CAS
Google Scholar
Sharypov VI, Marin N, Beregovtsova NG, Baryshnikov SV, Kuznetsov BN, Cebolla VL, Weber JV (2002) Co-pyrolysis of wood biomass and synthetic polymer mixtures. Part I: influence of experimental conditions on the evolution of solids, liquids and gases. J Anal Appl Pyrol 64(1):15–28. https://doi.org/10.1016/S0165-2370(01)00167-X
Article
CAS
Google Scholar
Shirima RR, Legg JP, Maeda DG, Tumwegamire S, Mkamilo G, Mtunda K et al (2020) Genotype by environment cultivar evaluation for cassava brown streak disease resistance in Tanzania. Virus Res 286:198017. https://doi.org/10.1016/j.virusres.2020.198017
Article
CAS
PubMed
PubMed Central
Google Scholar
Simate GS, Ndlovu S, Seepe L (2015) Removal of heavy metals using cassava peel waste biomass in a multi-stage countercurrent batch operation. J Southern Afr Inst Min Metal 115(12):1137–1141. https://doi.org/10.17159/2411-9717/2015/v115n12a1
Article
CAS
Google Scholar
Sudaryanto Y, Hartono SB, Irawaty W, Hindarso H, Ismadji S (2006) High surface area activated carbon prepared from cassava peel by chemical activation. Biores Technol 97(5):734–739. https://doi.org/10.1016/j.biortech.2005.04.029
Article
CAS
Google Scholar
Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores Technol 83(1):1–11. https://doi.org/10.1016/S0960-8524(01)00212-7
Article
CAS
Google Scholar
Uthumporn U, Shariffa YN, Fazilah A, Karim AA (2012) Effects of NaOH treatment of cereal starch granules on the extent of granular starch hydrolysis. Colloid Polym Sci 290(15):1481–1491. https://doi.org/10.1007/s00396-012-2674-2
Article
CAS
Google Scholar
Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22(45):23710–23725. https://doi.org/10.1039/c2jm34066f
Article
CAS
Google Scholar
Xu X, Zhao Y, Sima J, Zhao L, Mašek O, Cao X (2017) Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review. Biores Technol 241:887–899. https://doi.org/10.1016/j.biortech.2017.06.023
Article
CAS
Google Scholar
Yahya MA, Al-Qodah Z, Ngah CWZ (2015) Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew Sustain Energy Rev 46:218–235. https://doi.org/10.1016/j.rser.2015.02.051
Article
CAS
Google Scholar
Zdravkov BD, Čermák JJ, Šefara M, Janků J (2007) Pore classification in the characterization of porous materials: a perspective. Cent Eur J Chem 5(2):385–395. https://doi.org/10.2478/s11532-007-0017-9
Article
CAS
Google Scholar