Adegboye MF, Ojuederie OB, Talia PM, Babalola OO (2021) Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. Biotechnol Biofuels 14(1):5. https://doi.org/10.1186/s13068-020-01853-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Darkazali H, Meevootisom V, Isarangkul D, Wiyakrutta S (2017) Gene expression and molecular characterization of a xylanase from chicken cecum metagenome. Int J Microbiol 2017:4018398. https://doi.org/10.1155/2017/4018398
Article
CAS
PubMed
PubMed Central
Google Scholar
Alvarez TM, Goldbeck R, dos Santos CR, Paixão DA, Gonçalves TA, Franco Cairo JP, Almeida RF, de Oliveira PI, Jackson G, Cota J, Büchli F, Citadini AP, Ruller R, Polo CC, de Oliveira NM, Murakami MT, Squina FM (2013) Development and biotechnological application of a novel endoxylanase family GH10 identified from sugarcane soil metagenome. PLoS ONE 8(7):e70014. https://doi.org/10.1371/journal.pone.0070014
Article
CAS
PubMed
PubMed Central
Google Scholar
Alves K, Silva M, Cotta S, Ottoni J, van Elsas J, Oliveira V, Andreote F (2020) Mangrove soil as a source for novel xylanase and amylase as determined by cultivation-dependent and cultivation-independent methods. Braz J Microbiol 51(1):217–228. https://doi.org/10.1007/s42770-019-00162-7
Article
CAS
PubMed
Google Scholar
Amoozegar MA, Safarpour A, Noghabi KA, Bakhtiary T, Ventosa A (2019) Halophiles and their vast potential in biofuel production. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01895
Article
PubMed
PubMed Central
Google Scholar
Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96. https://doi.org/10.1126/science.1065659
Article
CAS
PubMed
Google Scholar
Batista-García RA, del Rayo S-C, Talia P, Jackson SA, O’Leary ND, Dobson ADW, Folch-Mallol JL (2016) From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects. Biofuels Bioprod Bioref 10:864–882. https://doi.org/10.1002/bbb.1709
Article
CAS
Google Scholar
Ben Guerrero E, Arneodo J, Campanha BR, Abrão de Oliveira P, Veneziano Labate MT, Regiani T, Campos E, Cataldi A, Labate CA, Rodrigues MC, Talia P (2015) Prospection and evaluation of cellulolytic and hemicellulolytic enzymes using untreated and pretreated biomass in two argentinean native termites. PLoS ONE 10(8):e0136573. https://doi.org/10.1371/journal.pone.0136573
Article
CAS
PubMed
PubMed Central
Google Scholar
Ben Guerrero EB, de Villegas RMD, Soria MA, Santangelo MP, Campos E, Talia PM (2020) Characterization of two GH5 endoglucanases from termite microbiome using synthetic metagenomics. Appl Microbiol Biotechnol 104(19):8351–8366. https://doi.org/10.1007/s00253-020-10831-5
Article
CAS
Google Scholar
Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27(3):343–350. https://doi.org/10.1093/bioinformatics/btq662
Article
CAS
PubMed
Google Scholar
Berini F, Casciello C, Marcone GL, Marinelli F (2017) Metagenomics: novel enzymes from non-culturable microbes. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnx211
Article
PubMed
Google Scholar
Bhardwaj N, Kumar B, Verma PA (2019) A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresour Bioprocess. https://doi.org/10.1186/s40643-019-0276-2
Article
Google Scholar
Bignell DE, Eggleton P (2005) On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Insectes Soc 42(1):57–69. https://doi.org/10.1007/BF01245699
Article
Google Scholar
Brennan Y, Callen WN, Christoffersen L, Dupree P, Goubet F, Healey S, Hernandez M, Keller M, Li K, Palackal N, Sittenfeld A, Tamayo G, Wells S, Hazlewood GP, Mathur EJ, Short JM, Robertson DE, Steer BA (2004) Unusual microbial xylanases from insect guts. Appl Environ Microbiol 70(6):3609–3617. https://doi.org/10.1128/AEM.70.6.3609-3617.2004
Article
CAS
PubMed
PubMed Central
Google Scholar
Charnock SJ, Spurway TD, Xie H, Beylot MH, Virden R, Warren RA, Hazlewood GP, Gilbert HJ (1998) The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved. J Biol Chem 273(48):32187–32199. https://doi.org/10.1074/jbc.273.48.32187
Article
CAS
PubMed
Google Scholar
Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) All-atom structure validation for macromolecular crystallography. Acta Crys 66:16–21. https://doi.org/10.1107/S0907444909042073
Article
CAS
Google Scholar
Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23. https://doi.org/10.1016/j.femsre.2004.06.005
Article
CAS
PubMed
Google Scholar
Dao TK, Do TH, Le NG, Nguyen HD, Nguyen TQ, Le TTH, Truong NH (2021) Understanding the role of Prevotella genus in the digestion of lignocellulose and other substrates in Vietnamese native goats’ rumen by metagenomic deep sequencing. Animals 11(11):3257. https://doi.org/10.3390/ani11113257
Article
PubMed
PubMed Central
Google Scholar
Dheeran P, Nandhagopal N, Kumar S, Jaiswal YK, Adhikari DK (2012) A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. J Ind Microbiol Biotechnol 39(6):851–860. https://doi.org/10.1007/s10295-012-1093-1
Article
CAS
PubMed
Google Scholar
Ellilä S, Bromann P, Nyyssönen M, Itävaara M, Koivula A, Paulin L, Kruus K (2019) Cloning of novel bacterial xylanases from lignocellulose-enriched compost metagenomic libraries. AMB Express 9(1):124. https://doi.org/10.1186/s13568-019-0847-9
Article
PubMed
PubMed Central
Google Scholar
Fredriksen L, Stokke R, Jensen MS, Westereng B, Jameson JK, Steen IH, Eijsink VGH (2019) Discovery of a thermostable GH10 xylanase with broad substrate specificity from the arctic mid-ocean ridge vent system. Appl Environ Microbiol. https://doi.org/10.1128/aem.02970-18
Article
PubMed
PubMed Central
Google Scholar
Gabbanelli N, Erbetta E, Sanz Smachetti ME, Lorenzo M, Talia PM, Ramírez I, Vera M, Durruty I, Pontaroli AC, Echarte MM (2021) Towards an ideotype for food-fuel dual-purpose wheat in Argentina with focus on biogas production. Biotechnol Biofuels. https://doi.org/10.1186/s13068-021-01941-x
Article
PubMed
PubMed Central
Google Scholar
Gong X, Gruniniger RJ, Forster RJ, Teather RM, McAllister TA (2013) Biochemical analysis of a highly specific, pH stable xylanase gene identified from a bovine rumen-derived metagenomic library. Appl Microbiol Biotechnol 97(6):2423–2431. https://doi.org/10.1007/s00253-012-4088-y
Article
CAS
PubMed
Google Scholar
Guo B, Chen XL, Sun CY, Zhou BC, Zhang YZ (2009) Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-beta-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol 84(6):1107–1115. https://doi.org/10.1007/s00253-009-2056-y
Article
CAS
PubMed
Google Scholar
Hero JS, Pisa JH, Romero CM, Nordberg Karlsson E, Linares-Pastén JA, Martinez MA (2021) Endo-xylanases from Cohnella sp. AR92 aimed at xylan and arabinoxylan conversion into value-added products. Appl Microbiol Biotechnol 105(18):6759–6778. https://doi.org/10.1007/s00253-021-11495-5
Article
CAS
PubMed
Google Scholar
Jacomini D, Bussler L, Corrêa J, Kadowaki M, Maller A, Silva J, Simão R (2020) Cloning, expression and characterization of C. crescentus xynA2 gene and application of Xylanase II in the deconstruction of plant biomass. Mol Biol Rep 47(6):4427–4438. https://doi.org/10.1007/s11033-020-05507-2
Article
CAS
PubMed
Google Scholar
Joshi N, Sharma M, Singh SP (2020) Characterization of a novel xylanase from an extreme temperature hot spring metagenome for xylooligosaccharide production. Appl Microbiol Biotechnol 104(11):4889–4901. https://doi.org/10.1007/s00253-020-10562-7
Article
CAS
PubMed
Google Scholar
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim DY, Kim J, Lee YM, Lee JS, Shin DH, Ku BH, Son KH, Park HY (2021) Identification and characterization of a novel, cold-adapted d-xylobiose- and d-xylose-releasing endo-β-1,4-xylanase from an Antarctic soil bacterium, Duganella sp. PAMC 27433. Biomolecules 11(5):680. https://doi.org/10.3390/biom11050680
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai Z, Zhou C, Ma X, Xue Y, Ma Y (2021) Enzymatic characterization of a novel thermostable and alkaline tolerant GH10 xylanase and activity improvement by multiple rational mutagenesis strategies. Int J Biol Macromol 170:164–177. https://doi.org/10.1016/j.ijbiomac.2020.12.137
Article
CAS
PubMed
Google Scholar
Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM (2018) PDBsum: structural summaries of PDB entries. Protein Sci 27(1):129–134. https://doi.org/10.1002/pro.3289
Article
CAS
PubMed
Google Scholar
Liew KJ, Liang CH, Lau YT, Yaakop AS, Chan KG, Shahar S, Shamsir MS, Goh KM (2022) Thermophiles and carbohydrate-active enzymes (CAZymes) in biofilm microbial consortia that decompose lignocellulosic plant litters at high temperatures. Sci Rep 12:2850. https://doi.org/10.1038/s41598-022-06943-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Linares-Pastén JA, Hero JS, Pisa JH, Teixeira C, Nyman M, Adlercreutz P, Martinez MA, Karlsson EN (2021) Novel xylan-degrading enzymes from polysaccharide utilizing loci of Prevotella copri DSM18205. Glycobiology 31(10):1330–1349. https://doi.org/10.1093/glycob/cwab056
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Zhao X, Bai F (2013) Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Appl Microbiol Biotechnol 97(10):4361–4368. https://doi.org/10.1007/s00253-012-4290-y
Article
CAS
PubMed
Google Scholar
Liu N, Li H, Chevrette MG, Zhang L, Cao L, Zhou H, Zhou X, Zhou Z, Pope PB, Currie CR, Huang Y, Wang Q (2019) Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME J 13(1):104–117. https://doi.org/10.1038/s41396-018-0255-1
Article
CAS
PubMed
Google Scholar
Mamo G, Thunnissen M, Hatti-Kaul R, Mattiasson B (2009) An alkaline active xylanase: Insights into mechanisms of high pH catalytic adaptation. Biochimie 91(9):1187–1196. https://doi.org/10.1016/j.biochi.2009.06.17
Article
CAS
PubMed
Google Scholar
Mhiri S, Bouanane-Darenfed A, Jemli S, Neifar S, Ameri R, Mezghani M, Bouacem K, Jaouadi B, Bejar S (2020) A thermophilic and thermostable xylanase from Caldicoprobacter algeriensis: Recombinant expression, characterization and application in paper biobleaching. Int J Biolo Macromol 164:808–817. https://doi.org/10.1016/j.ijbiomac.2020.07.162
Article
CAS
Google Scholar
Mo X-c, Chen C-l, Pang H, Feng Y, Feng J-x (2010) Identification and characterization of a novel xylanase derived from a rice straw degrading enrichment culture. Appl Microbiol Biotechnol 87(6):2137–2146. https://doi.org/10.1007/s00253-010-2712-2
Article
CAS
PubMed
Google Scholar
Narisetty V, Cox R, Bommareddy R, Agrawal D, Ahmad E, Pant KK, Chandel AK, Bhatia SK, Kumar D, Binod P, Gupta VK, Kumar V (2021) Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. Sustain Energ Fuels 6(1):29–65. https://doi.org/10.1039/d1se00927c
Article
CAS
Google Scholar
Nimchua T, Thongaram T, Uengwetwanit T, Pongpattanakitshote S, Eurwilaichitr L (2012) Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J Microbiol Biotechnol 22(4):462–469
Article
CAS
Google Scholar
Pavarina G, Lemos E, Lima N, Sarmanho Pizauro J (2021) Characterization of a new bifunctional endo-1,4-β-xylanase/esterase found in the rumen metagenome. Sci Rep 11:10440. https://doi.org/10.1038/s41598-021-89916-8
Article
CAS
PubMed
PubMed Central
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084
Article
CAS
PubMed
Google Scholar
Polizeli ML, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591. https://doi.org/10.1007/s00253-005-1904-7
Article
CAS
PubMed
Google Scholar
Prakash S, Veeranagouda Y, Kyoung L, Sreeramulu K (2009) Xylanase production using inexpensive agricultural wastes and its partial characterization from a halophilic Chromohalobacter sp. TPSV 101. World J Microbiol Biotechnol 25(2):197–204. https://doi.org/10.1007/s11274-008-9880-6
Article
CAS
Google Scholar
Rashamuse K, Sanyika Tendai W, Mathiba K, Ngcobo T, Mtimka S, Brady D (2017) Metagenomic mining of glycoside hydrolases from the hindgut bacterial symbionts of a termite (Trinervitermes trinervoides) and the characterization of a multimodular β-1,4-xylanase (GH11). Biotechnol Appl Biochem 64:174–186. https://doi.org/10.1002/bab.1480
Article
CAS
PubMed
Google Scholar
Romano N, Gioffré A, Sede S, Campos E, Cataldi A, Talia P (2013) Characterization of cellulolytic activities of environmental bacterial consortia from an Argentinian native forest. Curr Microbiol 67:138–147. https://doi.org/10.1007/s00284-013-0345-2
Article
CAS
PubMed
Google Scholar
Romero Victorica M, Soria MA, Batista-García RA, Ceja-Navarro JA, Vikram S, Ortiz M, Ontañon O, Ghio S, Martínez-Ávila L, Quintero García OJ, Etcheverry C, Campos E, Cowan D, Arneodo J, Talia PM (2020) Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes. Sci Rep 10(1):3864. https://doi.org/10.1038/s41598-020-60850-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738. https://doi.org/10.1038/nprot.2010.5
Article
CAS
PubMed
PubMed Central
Google Scholar
Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33:W382. https://doi.org/10.1093/nar/gki387
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian L, Liu S, Wang S, Wang L (2016) Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis. Sci Rep 6:23605. https://doi.org/10.1038/srep23605
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3. 0: computed atlas of surface topography of proteins. Nucleic Acids Res 46(W1):W363-w367. https://doi.org/10.1093/nar/gky473
Article
CAS
PubMed
PubMed Central
Google Scholar
Vacilotto M, Veiga Sepulchro A, Pellegrini V, Polikarpov I (2021) Production of prebiotic xylooligosaccharides from arabino- and glucuronoxylan using a two-domain Jonesia denitrificans xylanase from GH10 family. Enzyme Microb Technol 144:109743. https://doi.org/10.1016/j.enzmictec.2021.109743
Article
CAS
PubMed
Google Scholar
Vasić K, Knez Ž, Leitgeb M (2021) Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Molecules. https://doi.org/10.3390/molecules26030753
Article
PubMed
PubMed Central
Google Scholar
Verma D (2021) Extremophilic prokaryotic endoxylanases: diversity, applicability, and molecular insights. Front Microbiol 12:728475. https://doi.org/10.3389/fmicb.2021.728475
Article
PubMed
PubMed Central
Google Scholar
Verma D, Satyanarayana T (2020) Xylanolytic extremozymes retrieved from environmental metagenomes: characteristics, genetic engineering, and applications. Front Microbiol 11:551109. https://doi.org/10.3389/fmicb.2020.551109
Article
PubMed
PubMed Central
Google Scholar
Verma D, Kawarabayasi Y, Miyazaki K, Satyanarayana T (2013) Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (Mxyl) retrieved from compost-soil metagenome. PLoS ONE 8(1):e52459. https://doi.org/10.1371/journal.pone.0052459
Article
CAS
PubMed
PubMed Central
Google Scholar
Vikram S, Arneodo JD, Calcagno J, Ortiz M, Mon ML, Etcheverry C, Cowan DA, Talia P (2021) Diversity structure of the microbial communities in the guts of four neotropical termite species. PeerJ 9:e10959. https://doi.org/10.7717/peerj.10959
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134. https://doi.org/10.1093/protein/8.2.127
Article
CAS
PubMed
Google Scholar
Wang G, Wu J, Yan R, Lin J, Ye X (2017a) A novel multi-domain high molecular, salt-stable alkaline xylanase from Alkalibacterium sp. SL3. Front Microbiol 7:2120. https://doi.org/10.3389/fmicb.2016.02120
Article
PubMed
PubMed Central
Google Scholar
Wang H, Li Z, Liu H, Li S, Qiu H-y, Li K, Luo X, Song Y, Wang N, He H, Zhou H, Ma W, Zhang T-C (2017b) Heterologous expression in Pichia pastoris and characterization of a novel GH11 xylanase from saline-alkali soil with excellent tolerance to high pH, high salt concentrations and ethanol. Protein Expr Purif 139:71–77. https://doi.org/10.1016/j.pep.2017.06.003
Article
CAS
PubMed
Google Scholar
Wang J, Liang J, Li Y, Tian L, Wei Y (2021) Characterization of efficient xylanases from industrial-scale pulp and paper wastewater treatment microbiota. AMB Express 11(1):19. https://doi.org/10.1186/s13568-020-01178-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu H, Ioannou E, Henrissat B, Montanier CY, Bozonnet S, O’Donohue MJ, Dumon C (2021a) Multimodularity of a GH10 xylanase found in the termite gut metagenome. Appl Environ Microbiol 87:e01714-e1720. https://doi.org/10.1128/AEM.01714-20
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu R, Wang L, Xie J, Zhang Z (2021b) Diversity and function of wolf spider gut microbiota revealed by shotgun metagenomics. Front Microbiol 12:758794. https://doi.org/10.3389/fmicb.2021.75879
Article
PubMed
PubMed Central
Google Scholar
Yu H, Zhao S, Fan Y, Hu C, Lu W, Guo L (2019) Cloning and heterologous expression of a novel halo/alkali-stable multi-domain xylanase (XylM18) from a marine bacterium Marinimicrobium sp. strain LS-A18. Appl Microbiol Biotechnol 103(21):8899–8909. https://doi.org/10.1007/s00253-019-10140-6
Article
CAS
PubMed
Google Scholar
Zhou J, Wu Q, Zhang R, Mo M, Tang X, Li J, Xu B, Ding J, Lu Q, Huang Z (2014) A thermo-halo-tolerant and proteinase-resistant endoxylanase from Bacillus sp. HJ14. Folia Microbiol (Praha) 59(5):423–31. https://doi.org/10.1007/s12223-014-0316-4
Article
CAS
Google Scholar