Ahn JH, Jang YS, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66
Article
CAS
Google Scholar
Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabasi AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427(6977):839–843
Article
CAS
Google Scholar
Berrios-Rivera SJ, Bennett GN, San KY (2002a) The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metab Eng 4(3):230–237
Article
CAS
Google Scholar
Berrios-Rivera SJ, Bennett GN, San KY (2002b) Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase. Metab Eng 4(3):217–229
Article
CAS
Google Scholar
Bunch PK, Matjan F, Lee N, Clark DP (1997) The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiol 143(1):187–195
Article
CAS
Google Scholar
Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657
Article
CAS
Google Scholar
Chatterjee R, Millard CS, Champion K, Clark DP, Donnelly MI (2001) Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol 67:148–154
Article
CAS
Google Scholar
Chung BKS, Lee DY (2009) Flux-sum analysis: a metabolite-centric approach for understanding the metabolic network. BMC Syst Biol 3(1):1–10
Article
Google Scholar
Famili I, Forster J, Nielsen J, Palsson BØ (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci USA 100(23):13134–13139
Article
CAS
Google Scholar
Graef MRD, Alexeeva S, Snoep JL, Mattos MJTD (1999) The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181(8):2351–2357
Google Scholar
Gu D, Zhang C, Zhou S, Wei L, Hua Q (2016) IdealKnock: a framework for efficiently identifying knockout strategies leading to targeted overproduction. Comput Biol Chem 61:229–237
Article
CAS
Google Scholar
Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba M, Hirai K, Hoque A, Ho PY, Kakazu Y, Sugawara K, Igarashi S, Harada S, Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, Yugi K, Arakawa K, Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K, Mori H, Tomita M (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316(5824):593–597
Article
CAS
Google Scholar
Jamshidi N, Palsson BØ (2006) Systems biology of SNPs. Mol Syst Biol 2(1):38–38
Google Scholar
Jian X, Zhou S, Zhang C, Hua Q (2016) In silico identification of gene amplification targets based on analysis of production and growth coupling. Biosystems 145:1–8
Article
CAS
Google Scholar
Jiang M, Liu SW, Ma JF, Chen KQ, Yu L, Yue FF, Xu B, Wei P (2010) Effect of growth phase feeding strategies on succinate production by metabolically engineered Escherichia coli. Appl Environ Microbiol 76(4):1298–1300
Article
CAS
Google Scholar
Kaufman DE, Smith RL (1998) Direction choice for accelerated convergence in hit-and-run sampling. Oper Res 46(1):84–95
Article
Google Scholar
Lakshmanan M, Kim TY, Chung BKS, Lee SY, Lee DY (2015a) Flux-sum analysis identifies metabolite targets for strain improvement. BMC Syst Biol 9(1):1–11
Article
Google Scholar
Lakshmanan M, Yu K, Koduru L, Lee DY (2015b) In silico model-driven cofactor engineering strategies for improving the overall NADP(H) turnover in microbial cell factories. J Ind Microbiol Biotechnol 42(10):1–14
Article
Google Scholar
Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10(4):291–305
CAS
Google Scholar
Lucy Stols MID (1997) Production of succinic acid through overexpression of NAD-dependent malic enzyme in an Escherichia coli Mutant. Appl Environ Microbiol 63(7):2695–2701
Google Scholar
Matjan F, Alam KY, Clark DP (1989) Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase. J Bacteriol 171(1):342–348
Article
CAS
Google Scholar
Matsuoka Y, Shimizu K (2015) Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism. Bioresour Bioprocess. 2(1):1–19
Article
Google Scholar
Millard CS, Chao YP, Liao JC, Donnelly MI (1996) Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl Environ Microbiol 62(5):1808–1810
CAS
Google Scholar
Occhipinti R, Puchowicz MA, LaManna JC, Somersalo E, Calvetti D (2007) Statistical analysis of metabolic pathways of brain metabolism at steady state. Annu Biomed Eng 35(6):886–902
Article
CAS
Google Scholar
Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248
Article
CAS
Google Scholar
Papin JA, Reed JL, Palsson BØ (2004) Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem Sci 29(12):641–647
Article
CAS
Google Scholar
Price ND, Schellenberger J, Palsson BØ (2004) Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies. Biophys J 87:2172–2186
Article
CAS
Google Scholar
Schellenberger J, Palsson BØ (2009) Use of randomized sampling for analysis of metabolic networks. J Biol Chem 284(9):5457–5461
Article
CAS
Google Scholar
Schellenberger J, Park JO, Conrad TM, Palsson BØ (2010) BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinform 11(1):174–178
Article
Google Scholar
Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BØ (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6(9):1290–1307
Article
CAS
Google Scholar
Singh A, Lynch MD, Gill RT (2009) Genes restoring redox balance in fermentation-deficient E. coli NZN111. Metab Eng 11(6):347–354
Article
CAS
Google Scholar
Singh A, Soh KC, Hatzimanikatis V, Gill RT (2011) Manipulating redox and ATP balancing for improved production of succinate in E. coli. Metab Eng 13(1):76–81
Article
CAS
Google Scholar
Thiele I, Price ND, Vo TD, Palsson BØ (2005) Candidate metabolic network states in human mitochondria. J Biol Chem 280(12):11683–11695
Article
CAS
Google Scholar
Wang W, Li Z, Xie J, Ye Q (2009) Production of succinate by a pflB ldhA double mutant of Escherichia coli overexpressing malate dehydrogenase. Bioprocess Biosyst Eng 32(6):737–745
Article
CAS
Google Scholar
Werpy T, Petersen G, Added TV, Werpy T, Petersen G, Added TV (2004) Top value added chemicals from biomass. Nato Adv Sci Inst 1(12):263–275
Google Scholar
Wu H, Li ZM, Zhou L, Ye Q (2007) Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture. Appl Environ Microbiol 73(73):7837–7843
Article
CAS
Google Scholar
Yang YT, Aristidou AA, San KY, Bennett GN (1999a) Metabolic flux analysis of Escherichia coli deficient in the acetate production pathway and expressing the Bacillus subtilis acetolactate synthase. Metab Eng 1(1):26–34
Article
CAS
Google Scholar
Yang YT, Bennett GN, San KY (1999b) Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli. Biotechnol Bioeng 65(3):291–297
Article
CAS
Google Scholar
Yun NR, San KY, Bennett GN (2005) Enhancement of lactate and succinate formation in adhE or pta-ackA mutants of NADH dehydrogenase-deficient Escherichia coli. J Appl Microbiol 99(6):1404–1412
Article
CAS
Google Scholar
Zhu J, Shimizu K (2004) The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli. Appl Microbiol Biotechnol 64(3):367–375
Article
CAS
Google Scholar