Akiyama T (2000) Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 11:273–282
Article
CAS
Google Scholar
Asuni AA, Hooper C, Reynolds CH, Lovestone S, Anderton BH, Killick R (2006) GSK3alpha exhibits beta-catenin and tau directed kinase activities that are modulated by Wnt. Eur J Neurosci 24:3387–3392
Article
Google Scholar
Burdon T, Stracey C, Chambers I, Nichols J, Smith A (1999) Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev Biol 210:30–43
Article
CAS
Google Scholar
Chen HF, Kuo HC, Chien CL, Shun CT, Yao YL, Ip PL, Chuang CY, Wang CC, Yang YS, Ho HN (2007) Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation. Hum Reprod 22:567–577
Article
Google Scholar
Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ, Rausch OL, Murphy GJ, Carter PS, Roxbee Cox L, Mills D, Brown MJ, Haigh D, Ward RW, Smith DG, Murray KJ, Reith AD, Holder JC (2000) Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol 7:793–803
Article
CAS
Google Scholar
De Strooper B, Annaert W (2001) Where Notch and Wnt signaling meet. The presenilin hub. J Cell Biol 152:F17–F20
Article
Google Scholar
Dravid G, Ye Z, Hammond H, Chen G, Pyle A, Donovan P, Yu X, Cheng L (2005) Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 23:1489–1501
Article
CAS
Google Scholar
Dvorak P, Dvorakova D, Hampl A (2006) Fibroblast growth factor signaling in embryonic and cancer stem cells. FEBS Lett 580:2869–2874
Article
CAS
Google Scholar
En-Shu LI, Peng XR, Qian QJ (2011) Effect of LIF on the mouse embryo stem cells under serum-free condition. J Zhejiang Sci-Tech Univ 28:96–100
Article
Google Scholar
Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156
Article
CAS
Google Scholar
Huang TS, Li L, Moalim-Nour L, Jia D, Bai J, Yao Z, Bennett SA, Figeys D, Wang L (2015) A regulatory network involving beta-catenin, e-cadherin, PI3k/Akt, and slug balances self-renewal and differentiation of human pluripotent stem cells in response to Wnt signaling. Stem Cells 33:1419–1433
Article
CAS
Google Scholar
Jin C, Samuelson L, Cui CB, Sun Y, Gerber DA (2011) MAPK/ERK and Wnt/beta-catenin pathways are synergistically involved in proliferation of Sca-1 positive hepatic progenitor cells. Biochem Biophys Res Commun 409:803–807
Article
CAS
Google Scholar
Kim GJ, Nishida H (2001) Role of the FGF and MEK signaling pathway in the ascidian embryo. Dev Growth Differ 43:521–533
Article
CAS
Google Scholar
Kimelman DXW (2006) Beta-Catenin destruction complex: insights and questions from a structural perspective. Oncogene 25:7483–7491
Article
Google Scholar
Kirby LA, Schott JT, Noble BL, Mendez DC, Caseley PS, Peterson SC, Routledge TJ, Patel NV (2012) Glycogen synthase kinase 3 (GSK3) inhibitor, SB-216763, promotes pluripotency in mouse embryonic stem cells. PLoS ONE 7:e39329
Article
CAS
Google Scholar
Kiyonari H, Kaneko M, Abe S, Aizawa S (2010) Three inhibitors of FGF receptor, ERK, and GSK3 establishes germline-competent embryonic stem cells of C57BL/6N mouse strain with high efficiency and stability. Genesis 48:317–327
CAS
PubMed
Google Scholar
Kleber M, Sommer L (2004) Wnt signaling and the regulation of stem cell function. Curr Opin Cell Biol 16:681–687
Article
CAS
Google Scholar
Kunath T, Saba-El-Leil MK, Almousailleakh M, Wray J, Meloche S, Smith A (2007) FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134:2895–2902
Article
CAS
Google Scholar
Li J, Wang G, Wang C, Zhao Y, Zhang H, Tan Z, Song Z, Ding M, Deng H (2007) MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation 75:299–307
Article
CAS
Google Scholar
Ma X, Chen H, Chen L (2016) A dual role of Erk signaling in embryonic stem cells. Exp Hematol 44:151–156
Article
CAS
Google Scholar
MacDonald BTTK, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26
Article
CAS
Google Scholar
Nagai A, Hattori T, Hirose M, Ogura A, Nozaki K, Aizawa M, Yamashita K (2014) Mouse embryonic stem cells cultured under serum- and feeder-free conditions maintain their self-renewal capacity on hydroxyapatite. Mater Sci Eng C Mater Biol Appl 34:214–220
Article
CAS
Google Scholar
Nichols J, Jones K (2017) Derivation of mouse embryonic stem (ES) cell lines using small-molecule inhibitors of Erk and Gsk3 signaling (2i). Cold Spring Harb Protoc 2017:pdb prot094086
Article
Google Scholar
Rosler ES, Fisk GJ, Ares X, Irving J, Miura T, Rao MS, Carpenter MK (2004) Long-term culture of human embryonic stem cells in feeder-free conditions. Dev Dyn 229:259–274
Article
CAS
Google Scholar
Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63
Article
CAS
Google Scholar
Sato H, Amagai K, Shimizukawa R, Tamai Y (2009) Stable generation of serum- and feeder-free embryonic stem cell-derived mice with full germline-competency by using a GSK3 specific inhibitor. Genesis 47:414–422
Article
CAS
Google Scholar
Shaul YD, Seger R (2007) The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 1773:1213–1226
Article
CAS
Google Scholar
Sumi T, Tsuneyoshi N, Nakatsuji N, Suemori H (2008) Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development 135:2969–2979
Article
CAS
Google Scholar
ten Berge D, Kurek D, Blauwkamp T, Koole W, Maas A, Eroglu E, Siu RK, Nusse R (2011) Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol 13:1070–1075
Article
Google Scholar
Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129
Article
CAS
Google Scholar
van Amerongen RNR (2009) Towards an integrated view of Wnt signaling in development. Development 136:3205–3214
Article
Google Scholar
Van der Jeught M, O’Leary T, Ghimire S, Lierman S, Duggal G, Versieren K, Deforce D, de Sousa Chuva, Lopes S, Heindryckx B, De Sutter P (2013) The combination of inhibitors of FGF/MEK/Erk and GSK3beta signaling increases the number of OCT3/4- and NANOG-positive cells in the human inner cell mass, but does not improve stem cell derivation. Stem Cells Dev 22:296–306
Article
Google Scholar
Volarevic V, Ljujic B, Stojkovic P, Lukic A, Arsenijevic N, Stojkovic M (2011) Human stem cell research and regenerative medicine—present and future. Br Med Bull 99:155–168
Article
Google Scholar
Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, Armstrong L, Djonov V, Lako M, Stojkovic M (2018) Ethical and safety issues of stem cell-based therapy. Int J Med Sci 15:36–45
Article
CAS
Google Scholar
Yang S, Lin G, Tan YQ, Deng LY, Yuan D, Lu GX (2010) Differences between karyotypically normal and abnormal human embryonic stem cells. Cell Prolif 43:195–206
Article
CAS
Google Scholar
Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523
Article
CAS
Google Scholar
Yu Y, Wang X, Zhang X, Zhai Y, Lu X, Ma H, Zhu K, Zhao T, Jiao J, Zhao ZA, Li L (2018) ERK inhibition promotes neuroectodermal precursor commitment by blocking self-renewal and primitive streak formation of the epiblast. Stem Cell Res Ther 9:2
Article
Google Scholar
Yun MS, Kim SE, Jeon SH, Lee JS, Choi KY (2005) Both ERK and Wnt/beta-catenin pathways are involved in Wnt3a-induced proliferation. J Cell Sci 118:313–322
Article
CAS
Google Scholar
Zhang XZ (2010) Modulation of embryonic stem cell fate and somatic cell reprogramming by small molecules. Reprod Biomed Online 21:26–36
Article
Google Scholar