Achinas S, Euverink GJW (2020) Effect of temperature and organic load on the performance of anaerobic bioreactors treating grasses. Environments 7:82. https://doi.org/10.3390/environments7100082
Article
Google Scholar
Agematu H, Takahashi T, Hamano Y (2017) Continuous volatile fatty acid production from lignocellulosic biomass by a novel rumen-mimetic bioprocess. J Biosci Bioeng 124:528–533. https://doi.org/10.1016/j.jbiosc.2017.06.006
Article
CAS
PubMed
Google Scholar
Ai B, Li J, Chi X et al (2014) Effect of pH and buffer on butyric acid production and microbial community characteristics in bioconversion of rice straw with undefined mixed culture. Biotechnol Bioprocess Eng 19:676–686. https://doi.org/10.1007/s12257-013-0655-z
Article
CAS
Google Scholar
Alvarez-Vasco C, Ma R, Quintero M et al (2016) Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem 18:5133–5141. https://doi.org/10.1039/C6GC01007E
Article
CAS
Google Scholar
Andalib M, Taher E, Money B et al (2017) Full scale demonstration of non-VFA pathway enhanced biological phosphorus removal. Proc Water Environ Fed 2017:182–195. https://doi.org/10.2175/193864717821494475
Article
Google Scholar
Andersen SJ, Hennebel T, Gildemyn S et al (2014) Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams. Environ Sci Technol 48:7135–7142. https://doi.org/10.1021/es500483w
Article
CAS
PubMed
Google Scholar
André L, Zdanevitch I, Pineau C et al (2019) Dry anaerobic co-digestion of roadside grass and cattle manure at a 60 L batch pilot scale. Bioresour Technol 289:121737. https://doi.org/10.1016/j.biortech.2019.121737
Article
CAS
PubMed
Google Scholar
Aydin S, Yesil H, Tugtas AE (2018) Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors. Bioresour Technol 250:548–555. https://doi.org/10.1016/j.biortech.2017.11.061
Article
CAS
PubMed
Google Scholar
Azadi P, Carrasquillo-Flores R, Pagán-Torres YJ et al (2012) Catalytic conversion of biomass using solvents derived from lignin. Green Chem 14:1573. https://doi.org/10.1039/c2gc35203f
Article
CAS
Google Scholar
Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev 21:506–523. https://doi.org/10.1016/j.rser.2012.12.022
Article
CAS
Google Scholar
Bastidas-Oyanedel J-R, Schmidt J (2018) Increasing profits in food waste biorefinery—a techno-economic analysis. Energies 11:1551. https://doi.org/10.3390/en11061551
Article
CAS
Google Scholar
Baumann I, Westermann P (2016) Microbial production of short chain fatty acids from lignocellulosic biomass: current processes and market. BioMed Res Int 2016:1–15. https://doi.org/10.1155/2016/8469357
Article
CAS
Google Scholar
Cabrera F, Serrano A, Torres Á et al (2019) The accumulation of volatile fatty acids and phenols through a pH-controlled fermentation of olive mill solid waste. Sci Total Environ 657:1501–1507. https://doi.org/10.1016/j.scitotenv.2018.12.124
Article
CAS
PubMed
Google Scholar
Camani PH, Anholon BF, Toder RR, Rosa DS (2020) Microwave-assisted pretreatment of eucalyptus waste to obtain cellulose fibers. Cellulose 27:3591–3609. https://doi.org/10.1007/s10570-020-03019-7
Article
CAS
Google Scholar
Cavinato C, Da Ros C, Pavan P, Bolzonella D (2017) Influence of temperature and hydraulic retention on the production of volatile fatty acids during anaerobic fermentation of cow manure and maize silage. Bioresour Technol 223:59–64. https://doi.org/10.1016/j.biortech.2016.10.041
Article
CAS
PubMed
Google Scholar
Chen Y, Wen Y, Zhou J et al (2012) Effects of pH on the hydrolysis of lignocellulosic wastes and volatile fatty acids accumulation: the contribution of biotic and abiotic factors. Bioresour Technol 110:321–329. https://doi.org/10.1016/j.biortech.2012.01.049
Article
CAS
PubMed
Google Scholar
Choi O, Kim T, Woo HM, Um Y (2015) Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum. Sci Rep 4:6961. https://doi.org/10.1038/srep06961
Article
CAS
Google Scholar
Corneli E, Dragoni F, Adessi A et al (2016) Energy conversion of biomass crops and agroindustrial residues by combined biohydrogen/biomethane system and anaerobic digestion. Bioresour Technol 211:509–518. https://doi.org/10.1016/j.biortech.2016.03.134
Article
CAS
PubMed
Google Scholar
Cysneiros D, Banks CJ, Heaven S, Karatzas K-AG (2012) The effect of pH control and ‘hydraulic flush’ on hydrolysis and volatile fatty acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate. Bioresour Technol 123:263–271. https://doi.org/10.1016/j.biortech.2012.06.060
Article
CAS
PubMed
Google Scholar
Da Ros C, Conca V, Eusebi AL et al (2020) Sieving of municipal wastewater and recovery of bio-based volatile fatty acids at pilot scale. Water Res 174:115633. https://doi.org/10.1016/j.watres.2020.115633
Article
CAS
PubMed
Google Scholar
De Vrieze J, Arends JBA, Verbeeck K et al (2018) Interfacing anaerobic digestion with (bio)electrochemical systems: potentials and challenges. Water Res 146:244–255. https://doi.org/10.1016/j.watres.2018.08.045
Article
CAS
PubMed
Google Scholar
Elalami D, Carrere H, Abdelouahdi K et al (2020) Mild microwaves, ultrasonic and alkaline pretreatments for improving methane production: impact on biochemical and structural properties of olive pomace. Bioresour Technol 299:122591. https://doi.org/10.1016/j.biortech.2019.122591
Article
CAS
PubMed
Google Scholar
Eryildiz B, Lukitawesa TMJ (2020) Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile fatty acid (VFA) production from citrus waste by anaerobic digestion. Bioresour Technol 302:122800. https://doi.org/10.1016/j.biortech.2020.122800
Article
CAS
PubMed
Google Scholar
Eskicioglu C, Prorot A, Marin J et al (2008) Synergetic pretreatment of sewage sludge by microwave irradiation in presence of H2O2 for enhanced anaerobic digestion. Water Res 42:4674–4682. https://doi.org/10.1016/j.watres.2008.08.010
Article
CAS
PubMed
Google Scholar
Fang W, Zhang P, Zhang X et al (2018) White rot fungi pretreatment to advance volatile fatty acid production from solid-state fermentation of solid digestate: efficiency and mechanisms. Energy 162:534–541. https://doi.org/10.1016/j.energy.2018.08.082
Article
CAS
Google Scholar
Fasahati P, Liu J (2014) Techno-economic analysis of production and recovery of volatile fatty acids from brown algae using membrane distillation. In: Eden MR, Siirola JD, Towler GP (eds) Computer aided chemical engineering. Elsevier, Amsterdam, pp 303–308
Google Scholar
Fernández-Dacosta C, Posada JA, Kleerebezem R et al (2015) Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: techno-economic analysis and ex-ante environmental assessment. Bioresour Technol 185:368–377. https://doi.org/10.1016/j.biortech.2015.03.025
Article
CAS
PubMed
Google Scholar
Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Int Conf Lignocellul Ethanol 46:70–78. https://doi.org/10.1016/j.biombioe.2012.03.026
Article
CAS
Google Scholar
Gao Y, Peng Y, Zhang J et al (2011) Biological sludge reduction and enhanced nutrient removal in a pilot-scale system with 2-step sludge alkaline fermentation and A2O process. Bioresour Technol 102:4091–4097. https://doi.org/10.1016/j.biortech.2010.12.051
Article
CAS
PubMed
Google Scholar
Gao L, Thangavel S, Guo Z-C et al (2020) Hydrodynamics analysis for an upflow integrated anaerobic digestion reactor with microbial electrolysis under different hydraulic retention times: effect of bioelectrode spatial distribution on functional communities involved in methane production and organic removal. ACS Sustain Chem Eng 8:190–199. https://doi.org/10.1021/acssuschemeng.9b05124
Article
CAS
Google Scholar
Garedew M, Lin F, Song B et al (2020) Greener routes to biomass waste valorization: lignin transformation through electrocatalysis for renewable chemicals and fuels production. Chemsuschem 13:4214–4237. https://doi.org/10.1002/cssc.202000987
Article
CAS
PubMed
Google Scholar
Gou C, Yang Z, Huang J et al (2014) Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste. Chemosphere 105:146–151. https://doi.org/10.1016/j.chemosphere.2014.01.018
Article
CAS
PubMed
Google Scholar
Gould JM (1984) High-efficiency ethanol production from lignocellulosic residues pretreated with alkaline H2O2. Biotechnol Bioeng 26:628–631. https://doi.org/10.1002/bit.260260613
Article
CAS
PubMed
Google Scholar
Guo P, Mochidzuki K, Cheng W et al (2011) Effects of different pretreatment strategies on corn stalk acidogenic fermentation using a microbial consortium. Bioresour Technol 102:7526–7531. https://doi.org/10.1016/j.biortech.2011.04.083
Article
CAS
PubMed
Google Scholar
Guo Z, Liu W, Yang C et al (2017) Computational and experimental analysis of organic degradation positively regulated by bioelectrochemistry in an anaerobic bioreactor system. Water Res 125:170–179. https://doi.org/10.1016/j.watres.2017.08.039
Article
CAS
PubMed
Google Scholar
Holliger C, Alves M, Andrade D et al (2016) Towards a standardization of biomethane potential tests. Water Sci Technol 74:2515–2522. https://doi.org/10.2166/wst.2016.336
Article
CAS
PubMed
Google Scholar
Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38:369–378. https://doi.org/10.1016/j.bej.2007.08.001
Article
CAS
Google Scholar
Islam MdS, Guo C, Liu C-Z (2018) Enhanced hydrogen and volatile fatty acid production from sweet sorghum stalks by two-steps dark fermentation with dilute acid treatment in between. Int J Hydrog Energy 43:659–666. https://doi.org/10.1016/j.ijhydene.2017.11.059
Article
CAS
Google Scholar
Janke L, Leite A, Batista K et al (2016) Optimization of hydrolysis and volatile fatty acids production from sugarcane filter cake: effects of urea supplementation and sodium hydroxide pretreatment. Pretreat Biomass 199:235–244. https://doi.org/10.1016/j.biortech.2015.07.117
Article
CAS
Google Scholar
Jankowska E, Chwiałkowska J, Stodolny M, Oleskowicz-Popiel P (2015) Effect of pH and retention time on volatile fatty acids production during mixed culture fermentation. Bioresour Technol 190:274–280. https://doi.org/10.1016/j.biortech.2015.04.096
Article
CAS
PubMed
Google Scholar
Jankowska E, Chwialkowska J, Stodolny M, Oleskowicz-Popiel P (2017) Volatile fatty acids production during mixed culture fermentation—the impact of substrate complexity and pH. Chem Eng J 326:901–910. https://doi.org/10.1016/j.cej.2017.06.021
Article
CAS
Google Scholar
Jiang J, Zhang Y, Li K et al (2013) Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresour Technol 143:525–530. https://doi.org/10.1016/j.biortech.2013.06.025
Article
CAS
PubMed
Google Scholar
Jiang Y, May HD, Lu L et al (2019) Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. Water Res 149:42–55. https://doi.org/10.1016/j.watres.2018.10.092
Article
CAS
PubMed
Google Scholar
Jiang Y, Chu N, Zhang W et al (2020) Electro-fermentation regulates mixed culture chain elongation with fresh and acclimated cathode. Energy Convers Manag 204:112285. https://doi.org/10.1016/j.enconman.2019.112285
Article
Google Scholar
Kainthola J, Kalamdhad AS, Goud VV, Goel R (2019) Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion. Bioresour Technol 286:121368. https://doi.org/10.1016/j.biortech.2019.121368
Article
CAS
PubMed
Google Scholar
Kandylis P, Bekatorou A, Pissaridi K et al (2016) Acidogenesis of cellulosic hydrolysates for new generation biofuels. Biomass Bioenergy 91:210–216. https://doi.org/10.1016/j.biombioe.2016.05.006
Article
CAS
Google Scholar
Khan MA, Ngo HH, Guo W et al (2019) Selective production of volatile fatty acids at different pH in an anaerobic membrane bioreactor. Bioresour Technol 283:120–128. https://doi.org/10.1016/j.biortech.2019.03.073
Article
CAS
PubMed
Google Scholar
Khanal SK, Chen W-H, Li L, Sung S (2004) Biological hydrogen production: effects of pH and intermediate products. Int J Hydrog Energy 29:1123–1131. https://doi.org/10.1016/j.ijhydene.2003.11.002
Article
CAS
Google Scholar
Kim N-J, Park GW, Kang J et al (2013) Volatile fatty acid production from lignocellulosic biomass by lime pretreatment and its applications to industrial biotechnology. Biotechnol Bioprocess Eng 18:1163–1168. https://doi.org/10.1007/s12257-013-0221-8
Article
CAS
Google Scholar
Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Pretreat Biomass 199:42–48. https://doi.org/10.1016/j.biortech.2015.08.085
Article
CAS
Google Scholar
Kocher GS, Kaur P, Taggar MS (2017) An overview of pretreatment processes with special reference to biological pretreatment for rice straw delignification. Curr Biochem Eng 4:151–163. https://doi.org/10.2174/2212711903666161102141859
Article
CAS
Google Scholar
Kumar G, Mudhoo A, Sivagurunathan P et al (2016) Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. Bioresour Technol 219:725–737. https://doi.org/10.1016/j.biortech.2016.08.065
Article
CAS
PubMed
Google Scholar
Lansing S, Hülsemann B, Choudhury A et al (2019) Food waste co-digestion in Germany and the United States: from lab to full-scale systems. Resour Conserv Recycl 148:104–113. https://doi.org/10.1016/j.resconrec.2019.05.014
Article
Google Scholar
Latif MA, Mehta CM, Batstone DJ (2017) Influence of low pH on continuous anaerobic digestion of waste activated sludge. Water Res 113:42–49. https://doi.org/10.1016/j.watres.2017.02.002
Article
CAS
PubMed
Google Scholar
Lee WS, Chua ASM, Yeoh HK, Ngoh GC (2014) A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J 235:83–99. https://doi.org/10.1016/j.cej.2013.09.002
Article
CAS
Google Scholar
Li X, Chen H, Hu L et al (2011) Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal. Environ Sci Technol 45:1834–1839. https://doi.org/10.1021/es1031882
Article
CAS
PubMed
Google Scholar
Li D, Liu S, Mi L et al (2015) Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresour Technol 189:319–326. https://doi.org/10.1016/j.biortech.2015.04.033
Article
CAS
PubMed
Google Scholar
Liu X, Liu H, Chen Y et al (2008) Effects of organic matter and initial carbon–nitrogen ratio on the bioconversion of volatile fatty acids from sewage sludge. J Chem Technol Biotechnol 83:1049–1055. https://doi.org/10.1002/jctb.1913
Article
CAS
Google Scholar
Liu H, Wang J, Wang A, Chen J (2011) Chemical inhibitors of methanogenesis and putative applications. Appl Microbiol Biotechnol 89:1333–1340. https://doi.org/10.1007/s00253-010-3066-5
Article
CAS
PubMed
Google Scholar
Liu H, Wang J, Liu X et al (2012) Acidogenic fermentation of proteinaceous sewage sludge: effect of pH. Water Res 46:799–807. https://doi.org/10.1016/j.watres.2011.11.047
Article
CAS
PubMed
Google Scholar
Liu S, Bischoff KM, Leathers TD et al (2013) Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213. Bioresour Technol 143:322–329. https://doi.org/10.1016/j.biortech.2013.06.015
Article
CAS
PubMed
Google Scholar
Liu H, Wang Y, Yin B et al (2016a) Improving volatile fatty acid yield from sludge anaerobic fermentation through self-forming dynamic membrane separation. Bioresour Technol 218:92–100. https://doi.org/10.1016/j.biortech.2016.06.077
Article
CAS
PubMed
Google Scholar
Liu J, Yu D, Zhang J et al (2016b) Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment. Water Res 98:98–108. https://doi.org/10.1016/j.watres.2016.03.073
Article
CAS
PubMed
Google Scholar
Liu H, Han P, Liu H et al (2018) Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Bioresour Technol 260:105–114. https://doi.org/10.1016/j.biortech.2018.03.105
Article
CAS
PubMed
Google Scholar
Liu L, Zhang Z, Wang J et al (2019a) Simultaneous saccharification and co-fermentation of corn stover pretreated by H2O2 oxidative degradation for ethanol production. Energy 168:946–952. https://doi.org/10.1016/j.energy.2018.11.132
Article
CAS
Google Scholar
Liu S, Deng Z, Li H, Feng K (2019b) Contribution of electrodes and electric current to process stability and methane production during the electro-fermentation of food waste. Bioresour Technol 288:121536. https://doi.org/10.1016/j.biortech.2019.121536
Article
CAS
PubMed
Google Scholar
Liu T, Zhou X, Li Z et al (2019c) Effects of liquid digestate pretreatment on biogas production for anaerobic digestion of wheat straw. Bioresour Technol 280:345–351. https://doi.org/10.1016/j.biortech.2019.01.147
Article
CAS
PubMed
Google Scholar
Liu J, Yin J, He X et al (2021) Optimizing food waste hydrothermal parameters to reduce Maillard reaction and increase volatile fatty acid production. J Environ Sci 103:43–49. https://doi.org/10.1016/j.jes.2020.09.032
Article
Google Scholar
Lu X, Wang H, Ma F et al (2018) Improved process performance of the acidification phase in a two-stage anaerobic digestion of complex organic waste: effects of an iron oxide-zeolite additive. Bioresour Technol 262:169–176. https://doi.org/10.1016/j.biortech.2018.04.052
Article
CAS
PubMed
Google Scholar
Macias-Corral M, Samani Z, Hanson A et al (2008) Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresour Technol 99:8288–8293. https://doi.org/10.1016/j.biortech.2008.03.057
Article
CAS
PubMed
Google Scholar
Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555. https://doi.org/10.1016/j.rser.2015.02.032
Article
CAS
Google Scholar
Martínez-Abad A, Giummarella N, Lawoko M, Vilaplana F (2018) Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods. Green Chem 20:2534–2546. https://doi.org/10.1039/C8GC00385H
Article
Google Scholar
Mockaitis G, Bruant G, Guiot SR et al (2020) Acidic and thermal pre-treatments for anaerobic digestion inoculum to improve hydrogen and volatile fatty acid production using xylose as the substrate. Renew Energy 145:1388–1398. https://doi.org/10.1016/j.renene.2019.06.134
Article
CAS
Google Scholar
Mohsenzadeh A, Jeihanipour A, Karimi K, Taherzadeh MJ (2012) Alkali pretreatment of softwood spruce and hardwood birch by NaOH/thiourea, NaOH/urea, NaOH/urea/thiourea, and NaOH/PEG to improve ethanol and biogas production. J Chem Technol Biotechnol 87:1209–1214. https://doi.org/10.1002/jctb.3695
Article
CAS
Google Scholar
Monlau F, Barakat A, Steyer JP, Carrere H (2012) Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour Technol 120:241–247. https://doi.org/10.1016/j.biortech.2012.06.040
Article
CAS
PubMed
Google Scholar
Mu L, Zhang L, Zhu K et al (2020) Anaerobic co-digestion of sewage sludge, food waste and yard waste: synergistic enhancement on process stability and biogas production. Sci Total Environ 704:135429. https://doi.org/10.1016/j.scitotenv.2019.135429
Article
CAS
PubMed
Google Scholar
Murali N, Fernandez S, Ahring BK (2017) Fermentation of wet-exploded corn stover for the production of volatile fatty acids. Bioresour Technol 227:197–204. https://doi.org/10.1016/j.biortech.2016.12.012
Article
CAS
PubMed
Google Scholar
Musa M, Idrus S, Che Man H, Nik Daud N (2018) Wastewater treatment and biogas recovery using anaerobic membrane bioreactors (AnMBRs): strategies and achievements. Energies 11:1675. https://doi.org/10.3390/en11071675
Article
CAS
Google Scholar
Orfão JJM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel 78:349–358. https://doi.org/10.1016/S0016-2361(98)00156-2
Article
Google Scholar
Pan X-R, Li W-W, Huang L et al (2018) Recovery of high-concentration volatile fatty acids from wastewater using an acidogenesis–electrodialysis integrated system. Bioresour Technol 260:61–67. https://doi.org/10.1016/j.biortech.2018.03.083
Article
CAS
PubMed
Google Scholar
Panigrahi S, Sharma HB, Dubey BK (2019) Overcoming yard waste recalcitrance through four different liquid hot water pretreatment techniques—structural evolution, biogas production and energy balance. Biomass Bioenergy 127:105268. https://doi.org/10.1016/j.biombioe.2019.105268
Article
CAS
Google Scholar
Park SK, Jang HM, Ha JH, Park JM (2014) Sequential sludge digestion after diverse pre-treatment conditions: sludge removal, methane production and microbial community changes. Bioresour Technol 162:331–340. https://doi.org/10.1016/j.biortech.2014.03.152
Article
CAS
PubMed
Google Scholar
Perendeci N, Gökgöl S, Orhon D (2018) Impact of alkaline H2O2 pretreatment on methane generation potential of greenhouse crop waste under anaerobic conditions. Molecules 23:1794. https://doi.org/10.3390/molecules23071794
Article
CAS
PubMed Central
Google Scholar
Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuels Bioprod Biorefining 2:58–73. https://doi.org/10.1002/bbb.48
Article
CAS
Google Scholar
Puyuelo B, Gea T, Sánchez A (2010) A new control strategy for the composting process based on the oxygen uptake rate. Chem Eng J 165:161–169. https://doi.org/10.1016/j.cej.2010.09.011
Article
CAS
Google Scholar
Ragauskas AJ, Beckham GT, Biddy MJ et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843. https://doi.org/10.1126/science.1246843
Article
CAS
PubMed
Google Scholar
Rago L, Pant D, Schievano A (2019) Electro-fermentation—microbial electrochemistry as new frontier in biomass refineries and industrial fermentations. Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts. Elsevier, Amsterdam, pp 265–287
Chapter
Google Scholar
Ramos-Suarez M, Zhang Y, Outram V (2021) Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste. Rev Environ Sci Biotechnol 20:439–478. https://doi.org/10.1007/s11157-021-09566-0
Article
CAS
Google Scholar
Reddy KO, Maheswari CU, Shukla M, Rajulu AV (2012) Chemical composition and structural characterization of Napier grass fibers. Mater Lett 67:35–38. https://doi.org/10.1016/j.matlet.2011.09.027
Article
CAS
Google Scholar
Regueiro L, Veiga P, Figueroa M et al (2012) Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiol Res 167:581–589. https://doi.org/10.1016/j.micres.2012.06.002
Article
CAS
PubMed
Google Scholar
Reilly M, Dinsdale R, Guwy A (2014) Mesophilic biohydrogen production from calcium hydroxide treated wheat straw. Int J Hydrog Energy 39:16891–16901. https://doi.org/10.1016/j.ijhydene.2014.08.069
Article
CAS
Google Scholar
Ren N et al (1997) Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol Bioeng 54:6
Article
Google Scholar
Rouches E, Escudié R, Latrille E, Carrère H (2019) Solid-state anaerobic digestion of wheat straw: impact of S/I ratio and pilot-scale fungal pretreatment. Waste Manag 85:464–476. https://doi.org/10.1016/j.wasman.2019.01.006
Article
CAS
PubMed
Google Scholar
Saha BC, Yoshida T, Cotta MA, Sonomoto K (2013) Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Ind Crops Prod 44:367–372. https://doi.org/10.1016/j.indcrop.2012.11.025
Article
CAS
Google Scholar
Saha M, Saynik PB, Borah A et al (2019) Dioxane-based extraction process for production of high quality lignin. Bioresour Technol Rep 5:206–211. https://doi.org/10.1016/j.biteb.2019.01.018
Article
Google Scholar
Sanders ME, Klaenhammer TR (2001) Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J Dairy Sci 84:319–331. https://doi.org/10.3168/jds.S0022-0302(01)74481-5
Article
CAS
PubMed
Google Scholar
Saritpongteeraka K, Chaiprapat S, Boonsawang P, Sung S (2015) Solid state co-fermentation as pretreatment of lignocellulosic palm empty fruit bunch for organic acid recovery and fiber property improvement. Int Biodeterior Biodegrad 100:172–180. https://doi.org/10.1016/j.ibiod.2015.03.001
Article
CAS
Google Scholar
Sawatdeenarunat C, Sung S, Khanal SK (2017) Enhanced volatile fatty acids production during anaerobic digestion of lignocellulosic biomass via micro-oxygenation. Bioresour Technol 237:139–145. https://doi.org/10.1016/j.biortech.2017.02.029
Article
CAS
PubMed
Google Scholar
Seeliger S, Janssen PH, Schink B (2002) Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA. FEMS Microbiol Lett 211:65–70. https://doi.org/10.1111/j.1574-6968.2002.tb11204.x
Article
CAS
PubMed
Google Scholar
Sharma HB, Panigrahi S, Dubey BK (2019) Hydrothermal carbonization of yard waste for solid bio-fuel production: study on combustion kinetic, energy properties, grindability and flowability of hydrochar. Waste Manag 91:108–119. https://doi.org/10.1016/j.wasman.2019.04.056
Article
CAS
PubMed
Google Scholar
Shi J, Wang Z, Stiverson JA et al (2013) Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresour Technol 136:574–581. https://doi.org/10.1016/j.biortech.2013.02.073
Article
CAS
PubMed
Google Scholar
Shi X, Lin J, Zuo J et al (2017) Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes. J Environ Sci 55:49–57. https://doi.org/10.1016/j.jes.2016.07.006
Article
CAS
Google Scholar
Soltanian S, Aghbashlo M, Almasi F et al (2020) A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Convers Manag 212:112792. https://doi.org/10.1016/j.enconman.2020.112792
Article
CAS
Google Scholar
Song K, Chu Q, Hu J et al (2019a) Two-stage alkali-oxygen pretreatment capable of improving biomass saccharification for bioethanol production and enabling lignin valorization via adsorbents for heavy metal ions under the biorefinery concept. Bioresour Technol 276:161–169. https://doi.org/10.1016/j.biortech.2018.12.107
Article
CAS
PubMed
Google Scholar
Song X, Wachemo AC, Zhang L et al (2019b) Effect of hydrothermal pretreatment severity on the pretreatment characteristics and anaerobic digestion performance of corn stover. Bioresour Technol 289:121646. https://doi.org/10.1016/j.biortech.2019.121646
Article
CAS
PubMed
Google Scholar
Sturm-Richter K, Golitsch F, Sturm G et al (2015) Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells. Bioresour Technol 186:89–96. https://doi.org/10.1016/j.biortech.2015.02.116
Article
CAS
PubMed
Google Scholar
Sun C, Liu R, Cao W et al (2015) Impacts of alkaline hydrogen peroxide pretreatment on chemical composition and biochemical methane potential of agricultural crop stalks. Energy Fuels 29:4966–4975. https://doi.org/10.1021/acs.energyfuels.5b00838
Article
CAS
Google Scholar
Sun J, Li Z, Zhou X et al (2019) Investigation on methane yield of wheat husk anaerobic digestion and its enhancement effect by liquid digestate pretreatment. Anaerobe 59:92–99. https://doi.org/10.1016/j.anaerobe.2019.05.009
Article
CAS
PubMed
Google Scholar
Tahboub MB, Lindemann WC, Murray L (2008) Chemical and physical properties of soil amended with pecan wood chips. HortScience 43:891–896. https://doi.org/10.21273/HORTSCI.43.3.891
Article
Google Scholar
Tao X, Zhang P, Zhang G et al (2019) Carbide slag pretreatment enhances volatile fatty acid production in anaerobic fermentation of four grass biomasses. Energy Convers Manag 199:112009. https://doi.org/10.1016/j.enconman.2019.112009
Article
CAS
Google Scholar
Tezel U, Tandukar M, Pavlostathis SG (2011) 6.35—Anaerobic biotreatment of municipal sewage sludge. In: Moo-Young M (ed) Comprehensive biotechnology (Second Edition). Academic Press, Burlington, pp 447–461
Chapter
Google Scholar
Tian D, Guo Y, Hu J et al (2020) Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity. Int J Biol Macromol 142:288–297. https://doi.org/10.1016/j.ijbiomac.2019.09.100
Article
CAS
PubMed
Google Scholar
Torri C, Samorì C, Ajao V et al (2019) Pertraction of volatile fatty acids through biodiesel-based liquid membranes. Chem Eng J 366:254–263. https://doi.org/10.1016/j.cej.2019.02.081
Article
CAS
Google Scholar
Tu W, Zhang D, Wang H (2019) Polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge by mixed microbial cultures: the link between phosphorus and PHA yields. Waste Manag 96:149–157. https://doi.org/10.1016/j.wasman.2019.07.021
Article
CAS
PubMed
Google Scholar
Vidal BC, Dien BS, Ting KC, Singh V (2011) Influence of feedstock particle size on lignocellulose conversion—a review. Appl Biochem Biotechnol 164:1405–1421. https://doi.org/10.1007/s12010-011-9221-3
Article
CAS
PubMed
Google Scholar
Wainaina S, Lukitawesa, Kumar Awasthi M, Taherzadeh MJ (2019a) Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: a critical review. Bioengineered 10:437–458. https://doi.org/10.1080/21655979.2019.1673937
Article
CAS
PubMed
PubMed Central
Google Scholar
Wainaina S, Parchami M, Mahboubi A et al (2019b) Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor. Bioresour Technol 274:329–334. https://doi.org/10.1016/j.biortech.2018.11.104
Article
CAS
PubMed
Google Scholar
Wang X, Yang G, Feng Y et al (2012) Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour Technol 120:78–83. https://doi.org/10.1016/j.biortech.2012.06.058
Article
CAS
PubMed
Google Scholar
Wang D, Liu Y, Ngo HH et al (2017) Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation. Bioresour Technol 238:343–351. https://doi.org/10.1016/j.biortech.2017.04.054
Article
CAS
PubMed
Google Scholar
Wang X, Li Z, Bai X et al (2018) Study on improving anaerobic co-digestion of cow manure and corn straw by fruit and vegetable waste: methane production and microbial community in CSTR process. Bioresour Technol 249:290–297. https://doi.org/10.1016/j.biortech.2017.10.038
Article
CAS
PubMed
Google Scholar
Wang S, Tao X, Zhang G et al (2019a) Benefit of solid-liquid separation on volatile fatty acid production from grass clipping with ultrasound-calcium hydroxide pretreatment. Bioresour Technol 274:97–104. https://doi.org/10.1016/j.biortech.2018.11.072
Article
CAS
PubMed
Google Scholar
Wang X, Guo W, Wen Y (2019b) Effects of temperature on lignocellulosic wastes hydrolysis and volatile fatty acids accumulation under neutral and strongly alkaline conditions. IOP Conf Ser Earth Environ Sci 358:022050. https://doi.org/10.1088/1755-1315/358/2/022050
Article
Google Scholar
Wikandari R, Taherzadeh MJ (2019) Rapid anaerobic digestion of organic solid residuals for biogas production using flocculating bacteria and membrane bioreactors—a critical review. Biofuels Bioprod Biorefin 13:1119–1132. https://doi.org/10.1002/bbb.1984
Article
CAS
Google Scholar
World Bioenergy Association (2016) Global biomass potential towards 2035
Wu Q, Bao X, Guo W et al (2019) Medium chain carboxylic acids production from waste biomass: current advances and perspectives. Biotechnol Adv 37:599–615. https://doi.org/10.1016/j.biotechadv.2019.03.003
Article
CAS
PubMed
Google Scholar
Xiang C, Tian D, Hu J et al (2021) Why can hydrothermally pretreating lignocellulose in low severities improve anaerobic digestion performances? Sci Total Environ 752:141929. https://doi.org/10.1016/j.scitotenv.2020.141929
Article
CAS
PubMed
Google Scholar
Xu H, Li Y, Hua D et al (2021) Effect of microaerobic microbial pretreatment on anaerobic digestion of a lignocellulosic substrate under controlled pH conditions. Bioresour Technol 328:124852. https://doi.org/10.1016/j.biortech.2021.124852
Article
CAS
PubMed
Google Scholar
Yang L, Xu F, Ge X, Li Y (2015) Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew Sustain Energy Rev 44:824–834. https://doi.org/10.1016/j.rser.2015.01.002
Article
CAS
Google Scholar
Yang Y, Yang J, Cao J, Wang Z (2018) Pretreatment with concurrent UV photocatalysis and alkaline H2O2 enhanced the enzymatic hydrolysis of sisal waste. Bioresour Technol 267:517–523. https://doi.org/10.1016/j.biortech.2018.07.038
Article
CAS
PubMed
Google Scholar
Yao Z, Li W, Kan X et al (2017) Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass. Energy 124:133–145. https://doi.org/10.1016/j.energy.2017.02.035
Article
CAS
Google Scholar
Yuan H, Song X, Guan R et al (2019) Effect of low severity hydrothermal pretreatment on anaerobic digestion performance of corn stover. Bioresour Technol 294:122238. https://doi.org/10.1016/j.biortech.2019.122238
Article
CAS
PubMed
Google Scholar
Zealand AM, Roskilly AP, Graham DW (2017) Effect of feeding frequency and organic loading rate on biomethane production in the anaerobic digestion of rice straw. Transform Innov Sustain Future Part II 207:156–165. https://doi.org/10.1016/j.apenergy.2017.05.170
Article
CAS
Google Scholar
Zhang Y, Hu J (2018) Development of Chinese character-writing program for mobile devices. In: Zhang Y, Cristol D (eds) Handbook of mobile teaching and learning. Springer, Berlin, pp 1–15
Google Scholar
Zhang B, Zhang L-L, Zhang S-C et al (2005) The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ Technol 26:329–340. https://doi.org/10.1080/09593332608618563
Article
PubMed
Google Scholar
Zhang X, Qiu W, Chen H (2012) Enhancing the hydrolysis and acidification of steam-exploded cornstalks by intermittent pH adjustment with an enriched microbial community. Bioresour Technol 123:30–35. https://doi.org/10.1016/j.biortech.2012.07.054
Article
CAS
PubMed
Google Scholar
Zhang J, Li W, Lee J et al (2017) Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment. Energy 137:479–486. https://doi.org/10.1016/j.energy.2017.02.163
Article
CAS
Google Scholar
Zhang L, Loh K-C, Zhang J (2018) Food waste enhanced anaerobic digestion of biologically pretreated yard waste: analysis of cellulose crystallinity and microbial communities. Waste Manag 79:109–119. https://doi.org/10.1016/j.wasman.2018.07.036
Article
CAS
PubMed
Google Scholar
Zhang L, Loh K-C, Zhang J (2019) Enhanced biogas production from anaerobic digestion of solid organic wastes: current status and prospects. Bioresour Technol Rep 5:280–296. https://doi.org/10.1016/j.biteb.2018.07.005
Article
Google Scholar
Zhang L, Loh K-C, Kuroki A et al (2021) Microbial biodiesel production from industrial organic wastes by oleaginous microorganisms: current status and prospects. J Hazard Mater 402:123543. https://doi.org/10.1016/j.jhazmat.2020.123543
Article
CAS
PubMed
Google Scholar
Zhou M, Yan B, Wong JWC, Zhang Y (2018) Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Bioresour Technol 248:68–78. https://doi.org/10.1016/j.biortech.2017.06.121
Article
CAS
PubMed
Google Scholar
Zhou M, Yan B, Lang Q, Zhang Y (2019) Elevated volatile fatty acids production through reuse of acidogenic off-gases during electro-fermentation. Sci Total Environ 668:295–302. https://doi.org/10.1016/j.scitotenv.2019.03.001
Article
CAS
PubMed
Google Scholar
Zhu Y, Yang S-T (2004) Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J Biotechnol 110:143–157. https://doi.org/10.1016/j.jbiotec.2004.02.006
Article
CAS
PubMed
Google Scholar
Zhu L, Li W, Dong X (2003) Species identification of genus Bifidobacterium based on partial HSP60 gene sequences and proposal of Bifidobacterium thermacidophilum subsp. porcinum subsp. nov. Int J Syst Evol Microbiol 53:1619–1623. https://doi.org/10.1099/ijs.0.02617-0
Article
CAS
PubMed
Google Scholar