AAFC (2021) Canada’s table and processed egg industry. https://agriculture.canada.ca/en/canadas-agriculture-sectors/animal-industry/poultry-and-egg-market-information/table-and-processed-eggs. Accessd 31 July 2020.
Abdalla H, Ali N, Siddig F, Ali S (2013) Improving tenderness of spent layer hens meat using papaya leaves (Carica papaya). Pak Vet J 33:73–76
Google Scholar
Abdallah MM, Fernández N, Matias AA, do Rosário Bronze M (2020) Hyaluronic acid and Chondroitin sulfate from marine and terrestrial sources: extraction and purification methods. Carbohyd Polym 243:116441
Article
CAS
Google Scholar
Adams P, Bridgwater T, Lea-Langton A, Ross A, Watson I (2018) Biomass conversion technologies. In: Greenhouse gas balances of bioenergy systems. Elsevier, pp 107–139
Alders RG (2004) Poultry for profit and pleasure. Food & Agriculture Org. https://books.google.ca/books?hl=en&lr=&id=cLUZV0LS77IC&oi=fnd&pg=PA21&dq=Poultry+for+profit+and+pleasure&ots=KyobGTpPjI&sig=6C4eJfI8abtA6UT4jbAkgWen2lU#v=onepage&q=Poultry%20for%20profit%20and%20pleasure&f=false
Alders RG, Dumas SE, Rukambile E, Magoke G, Maulaga W, Jong J, Costa R (2018) Family poultry: multiple roles, systems, challenges, and options for sustainable contributions to household nutrition security through a planetary health lens. Matern Child Nutr 14:e12668
Article
PubMed
PubMed Central
Google Scholar
Aldrich G (2006) Rendered products in pet food. Essential rendering, pp 159–178
Australia, A. H. (2021) Australian Ruminant Feed Ban. https://animalhealthaustralia.com.au/australian-ruminant-feed-ban/. Accessed 15 Sept 2021
Azeez L, Lateef A, Adejumo AL, Adeleke JT, Adetoro RO, Mustapha Z (2020) Adsorption behaviour of rhodamine B on hen feather and corn starch functionalized with green synthesized silver nanoparticles (AgNPs) mediated with cocoa pods extracts. Chem Afr 3(1):237–250
Article
CAS
Google Scholar
Bhaskar N, Sachindra N, Modi V, Sakhare P, Mahendrakar N (2006) Preparation of proteolytic activity rich ginger powder and evaluation of its tenderizing effect on spent-hen muscles. J Muscle Foods 17(2):174–184
Article
Google Scholar
Bravo Jimenez S, Orozco-Hernandez J, Uribe-Gomez J, Fuentes Hernandez V, Aguilar de la Torre A, Navarro-Gonzalez O (2009) The effect of adding spent hen meal in pig feeding. Res J Biol Sci 4(9):1045–1047
Google Scholar
Caroline NL, Schwartz H (1975) Chicken soup rebound and relapse of pneumonia: report of a case. Chest 67(2):215–216
Article
CAS
PubMed
Google Scholar
CFIA (2015) About Canada’s enhanced feed ban. https://inspection.canada.ca/animal-health/terrestrial-animals/diseases/reportable/bovine-spongiform-encephalopathy/enhanced-feed-ban/eng/1424374475489/1424374476208. Accessed 15 Sept 2021
Chatterjee A, Jensen VR (2017) A heterogeneous catalyst for the transformation of fatty acids to α-olefins. ACS Catal 7(4):2543–2547
Article
CAS
Google Scholar
Cheng Z, Hardy R, Huige N (2004) Apparent digestibility coefficients of nutrients in brewer’s and rendered animal by-products for rainbow trout (Oncorhynchus mykiss (Walbaum)). Aquac Res 35(1):1–9
Article
CAS
Google Scholar
Christmas R, Damron B, Ouart M (1996) The performance of commercial broilers when fed various levels of rendered whole-hen meal. Poult Sci 75(4):536–539
Article
CAS
PubMed
Google Scholar
Commission, E. (2021) Feed ban: Commission authorises use of certain animal proteins. https://ec.europa.eu/newsroom/sante/items/718842/en. Accessed 17 Sept 2021
de Souza K, Araujo R, dos Santos A, Rodrigues C, de Faria D, Trindade M (2011) Adding value to the meat of spent laying hens manufacturing sausages with a healthy appeal. Braz J Poult Sci 13(1):57–63
Article
Google Scholar
Dong X-B, Li X, Zhang C-H, Wang J-Z, Tang C-H, Sun H-M, Jia W, Chen L-L (2014) Development of a novel method for hot-pressure extraction of protein from chicken bone and the effect of enzymatic hydrolysis on the extracts. Food Chem 157:339–346
Article
CAS
PubMed
Google Scholar
Douglas MW, Parsons CM (1999) Dietary formulation with rendered spent hen meals on a total amino acid versus a digestible amino acid basis. Poult Sci 78(4):556–560
Article
CAS
PubMed
Google Scholar
Esfandi R, Walters ME, Tsopmo A (2019) Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 5(4):e01538
Article
PubMed
PubMed Central
Google Scholar
Esparza Y, Bandara N, Ullah A, Wu J (2018) Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins. Mater Sci Eng C 90:446–453
Article
CAS
Google Scholar
Fan H, Wu J (2020) Spent hen muscle protein hydrolysate reduces blood pressure in spontaneously hypertensive rats. J Am Oil Chem Soc 97:48. https://doi.org/10.21748/am20.159
Article
Google Scholar
Fan H, Wu J (2021a) Food peptides in blood pressure regulation. In: Food proteins and peptides, pp 371–401. https://doi.org/10.1039/9781839163425-00371
Fan H, Wu J (2021b) Purification and identification of novel ACE inhibitory and ACE2 upregulating peptides from spent hen muscle proteins. Food Chem 345:128867. https://doi.org/10.1016/j.foodchem.2020.128867
Article
CAS
PubMed
Google Scholar
Fan H, Wu J (2021c) Spent hen-derived angiotensin-converting enzyme 2 (ACE2) upregulating peptide reduces blood pressure in spontaneously hypertensive rats. J Am Oil Chem Soc 10:290. https://doi.org/10.21748/am21.312
CAS
Google Scholar
Fan H, Xu Q, Hong H, Wu J (2018) Stability and transport of spent hen-derived ACE-inhibitory peptides IWHHT, IWH, and IW in human intestinal Caco-2 cell monolayers. J Agric Food Chem 66:11347–11354. https://doi.org/10.1021/acs.jafc.8b03956
Article
CAS
PubMed
Google Scholar
Fan H, Yu W, Liao W, Wu J (2020) Spent hen protein hydrolysate with good gastrointestinal stability and permeability in caco-2 cells shows antihypertensive activity in SHR. Foods 9(10):1384. https://doi.org/10.3390/foods9101384
Article
CAS
PubMed Central
Google Scholar
Fan H, Bhullar KS, Wu J (2021) Spent hen muscle protein-derived RAS regulating peptides show antioxidant activity in vascular cells. Antioxidants 10(2):290. https://doi.org/10.3390/antiox10020290
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan H, Liao W, Spaans F, Pasha M, Davidge ST, Wu J (2022) Chicken muscle hydrolysate reduces blood pressure in spontaneously hypertensive rats, upregulates ACE2, and ameliorates vascular inflammation, fibrosis, and oxidative stress. J Food Sci 87(3):1292–1305. https://doi.org/10.1111/1750-3841.16077
Article
CAS
PubMed
Google Scholar
Freeman S, Poore M, Huntington G, Middleton T, Ferket P (2009a) Determination of nitrogen balance in goats fed a meal produced from hydrolyzed spent hen hard tissues. J Anim Sci 87(3):1068–1076
Article
CAS
PubMed
Google Scholar
Freeman S, Poore M, Middleton T, Ferket P (2009b) Alternative methods for disposal of spent laying hens: evaluation of the efficacy of grinding, mechanical deboning, and of keratinase in the rendering process. Bioresour Technol 100(19):4515–4520
Article
CAS
PubMed
Google Scholar
Fritts C, Kersey J, Waldroup P (2002) Utilization of spent hen meal in diets for laying hens. Int J Poult Sci 1(4):82–84
Article
Google Scholar
Fujita H, Yokoyama K, Yoshikawa M (2000) Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J Food Sci 65(4):564–569. https://doi.org/10.1111/j.1365-2621.2000.tb16049.x
Article
CAS
Google Scholar
Gu Y, Liang Y, Bai J, Wu W, Lin Q, Wu J (2019) Spent hen-derived ACE inhibitory peptide IWHHT shows antioxidative and anti-inflammatory activities in endothelial cells. J Funct Foods 53:85–92
Article
CAS
Google Scholar
Hjellnes V, Šližyte R, Rustad T, Carvajal AK, Greiff K (2020) Utilization of egg-laying hens (Gallus Gallus domesticus) for production of ingredients for human consumption and animal feed. BMC Biotechnol 20(1):1–12
Article
CAS
Google Scholar
Hong H, Chaplot S, Chalamaiah M, Roy BC, Bruce HL, Wu J (2017) Removing cross-Linked telopeptides enhances the production of low-molecular-weight collagen peptides from spent hens. J Agric Food Chem 65(34):7491–7499
Article
CAS
PubMed
Google Scholar
Hong H, Roy BC, Chalamaiah M, Bruce HL, Wu J (2018) Pretreatment with formic acid enhances the production of small peptides from highly cross-linked collagen of spent hens. Food Chem 258:174–180
Article
CAS
PubMed
Google Scholar
Hong H, Fan H, Chalamaiah M, Wu J (2019) Preparation of low-molecular-weight, collagen hydrolysates (peptides): current progress, challenges, and future perspectives. Food Chem 301:125222
Article
CAS
PubMed
Google Scholar
Hong H, Fan H, Roy BC, Wu J (2021) Amylase enhances production of low molecular weight collagen peptides from the skin of spent hen, bovine, porcine, and tilapia. Food Chem 352:129355
Article
CAS
PubMed
Google Scholar
Hur SJ, Choi JS, Jin SK (2016) Effect of freeze-dried mechanically deboned spent laying hen hydrolysates on the quality characteristics of boiled fish paste. Food Bioprocess Technol 9(7):1169–1176
Article
CAS
Google Scholar
Hy-Line (2020) Management guide—W-36. https://www.hyline.com/varieties/w-36
IEC (2021) International Egg Commission - Global egg production continues to grow. https://www.internationalegg.com/resource/global-egg-production-continues-to-grow/. Accessed 31 July 2021
Jacob JP, Wilson HR, Miles RD, Butcher GD, Mather FB (2014) Factors affecting egg production in backyard chicken flocks. US Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, Florida A & M University Cooperative Extension Program, and Boards of County Commissioners Cooperating 25(4):15
Jin S, Kim I, Jung H, Kim D, Choi Y, Hur S (2007) The development of sausage including meat from spent laying hen surimi. Poult Sci 86(12):2676–2684
Article
CAS
PubMed
Google Scholar
Jin SK, Kim IS, Jung HJ, Kim DH, Choi YJ, Hur SJ (2011) Effect of cryoprotectants on chemical, mechanical and sensorial characteristics of spent laying hen surimi. Food Bioprocess Technol 4(8):1407–1413
Article
CAS
Google Scholar
Jin SK, Choi JS, Choi YJ, Lee S-J, Lee SY, Hur SJ (2016) Antioxidant, liver protective and angiotensin I-converting enzyme inhibitory activities of old laying hen hydrolysate in crab meat analogue. Asian Australas J Anim Sci 29(12):1774
Article
CAS
PubMed
PubMed Central
Google Scholar
Kantale RA, Kumar P, Mehta N, Chatli MK, Malav OP, Kaur A, Wagh RV (2019) Comparative efficacy of synthetic and natural tenderizers on quality characteristics of restructured spent hen meat slices (RSHS). Food Sci Anim Resour 39(1):121
Article
PubMed
PubMed Central
Google Scholar
Karthik P, Kulkarni V, Sivakumar K (2010) Preparation, storage stability and palatability of spent hen meal based pet food. J Food Sci Technol 47(3):330–334
Article
CAS
PubMed
PubMed Central
Google Scholar
Karuppannan SK, Dowlath MJH, Raiyaan GD, Rajadesingu S, Arunachalam KD (2021) Application of poultry industry waste in producing value-added products—a review. In: Concepts of advanced zero waste tools, 91–121.
Koelkebeck KW, Parsons CM, Douglas M, Leeper R, Jin S, Wang X, Zhang X, Fernandez S (2001) Early postmolt performance of laying hens fed a low-protein corn molt diet supplemented with spent hen meal. Poult Sci 80(3):353–357
Article
CAS
PubMed
Google Scholar
Krestel-Rickert D (2001) Spent hens for use in pet food. Google Patents (US20010031307A1)
Kucinska JK, Magnucka EG, Oksinska MP, Pietr SJ (2014) Bioefficacy of hen feather keratin hydrolysate and compost on vegetable plant growth. Compost Sci Util 22(3):179–187
Article
CAS
Google Scholar
Kumar R, Sharma B (2006) Efficacy of barley flour as extender in chicken patties from spent hen meat. J Appl Anim Res 30(1):53–55
Article
Google Scholar
Kumar Y, Singh P, Tanwar VK, Ponnusamy P, Singh PK, Shukla P (2015) Augmentation of quality attributes of chicken tikka prepared from spent hen meat with lemon juice and ginger extract marination. Nutr Food Sci 45(4):606–615
Article
Google Scholar
Kumar D, Jyoti A, Tarafdar A, Kumar A, Badgujar PC (2020) Comparative functional and spectroscopic analysis of spent hen meat hydrolysate by individual and combined treatment of microbial proteases. Prep Biochem Biotechnol 51(6):618–627
Article
CAS
PubMed
Google Scholar
Kumar D, Mishra A, Tarafdar A, Kumar Y, Verma K, Aluko R, Trajkovska B, Badgujar PC (2021) In vitro bioaccessibility and characterisation of spent hen meat hydrolysate powder prepared by spray and freeze-drying techniques. Process Biochem 105:128–136
Article
CAS
Google Scholar
Laca A, Laca A, Diaz M (2021) Chapter 4—Environmental impact of poultry farming and egg production. In: Galanakis CM (ed) Environmental impact of agro-food industry and food consumption. Academic Press, Cambridge, pp 81–100. https://doi.org/10.1016/B978-0-12-821363-6.00010-2
Chapter
Google Scholar
Lammi C, Aiello G, Boschin G, Arnoldi A (2019) Multifunctional peptides for the prevention of cardiovascular disease: a new concept in the area of bioactive food-derived peptides. J Funct Foods 55:135–145
Article
CAS
Google Scholar
Lasekan A, Bakar FA, Hashim D (2013) Potential of chicken by-products as sources of useful biological resources. Waste Manage 33(3):552–565
Article
CAS
Google Scholar
Lee S, Min J, Kim I, Lee M (2003) Physical evaluation of popped cereal snacks with spent hen meat. Meat Sci 64(4):383–390
Article
CAS
PubMed
Google Scholar
Li CT (2006) Myofibrillar protein extracts from spent hen meat to improve whole muscle processed meats. Meat Sci 72(3):581–583
Article
CAS
PubMed
Google Scholar
Lipman TO (2003) The chicken soup paradigm and nutrition support: rethinking terminology. JPEN J Parenter Enteral Nutr 27(1):93
Article
PubMed
Google Scholar
Lohmann_Breeders (2019) Management guide—Lohmann brown and LSL. https://lohmann-breeders.com/
Maehashi K, Matsuzaki M, Yamamoto Y, UDAKA S (1999) Isolation of peptides from an enzymatic hydrolysate of food proteins and characterization of their taste properties. Biosci Biotechnol Biochem 63(3):555–559. https://doi.org/10.1271/bbb.63.555
Article
CAS
PubMed
Google Scholar
Malone B (2004) Compositing poultry losses. Poultry information exchange (Proceedings), pp 39–42
McHugh T (2019) Food Technology Editors Predict Trends for 2020. Webpage. https://www.ift.org/news-and-publications/news/2019/december/31/food-technology-editors-predict-trends-for-2020
Melgosa R, Marques M, Paiva A, Bernardo A, Fernández N, Sá-Nogueira I, Simões P (2021) Subcritical water extraction and hydrolysis of cod (Gadus morhua) frames to produce bioactive protein extracts. Foods 10(6):1222
Article
CAS
PubMed
PubMed Central
Google Scholar
Mittal A, Thakur V, Gajbe V (2013) Adsorptive removal of toxic azo dye Amido Black 10B by hen feather. Environ Sci Pollut Res 20(1):260–269
Article
CAS
Google Scholar
Nadalian M, Yusop SM, Babji AS, Mustapha WAW, Azman MA (2015) Effects of enzymatic hydrolysis on the antioxidant activity of water-soluble elastin extracted from broiler and spent hen skin. Int J Appl Biol Pharm Technol 6(4):1–10
Google Scholar
Nakamura A, Arimoto M, Takeuchi K, Fujii T (2002) A rapid extraction procedure of human hair proteins and identification of phosphorylated species. Biol Pharm Bull 25(5):569–572. https://doi.org/10.1248/bpb.25.569
Article
CAS
PubMed
Google Scholar
Naushad M, ALOthman ZA (2015) Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation. Desalin Water Treat 53(8):2158–2166
Article
CAS
Google Scholar
Newberry RC, Webster AB, Lewis NJ, Van Arnam C (1999) Management of spent hens. J Appl Anim Welf Sci 2(1):13–29
Article
CAS
PubMed
Google Scholar
New-Life_Mills (2016) Pullet & Layer management guide. https://www.newlifemills.com/wp-content/uploads/2016/10/Pullet-Layer-Management-Guide-2016-Oct.-2016-english-web.pdf
Nowsad A, Kanoh S, Niwa E (2000) Thermal gelation characteristics of breast and thigh muscles of spent hen and broiler and their surimi. Meat Sci 54(2):169–175
Article
CAS
PubMed
Google Scholar
Offengenden M, Chakrabarti S, Wu J (2018) Chicken collagen hydrolysates differentially mediate anti-inflammatory activity and type I collagen synthesis on human dermal fibroblasts. Food Sci Hum Wellness 7(2):138–147
Article
Google Scholar
Okarini IA, Purnomo H, Radiati LE (2013) Proximate, total phenolic, antioxidant activity and amino acids profile of Bali indigenous chicken, spent laying hen and broiler breast fillet. Int J Poult Sci 12(7):415–420
Article
CAS
Google Scholar
Parihar P, Kushwaha RKS (2000) A survey of keratinophilic fungi as a tool for hen feather utilization. Mycoscience 41(6):645–649
Article
Google Scholar
Peña-Saldarriaga LM, Fernández-López J, Pérez-Alvarez JA (2020) Quality of chicken fat by-products: lipid profile and colour properties. Foods 9(8):1046
Article
CAS
PubMed Central
Google Scholar
Pirsich W, von Hardenberg LM, Theuvsen L (2017) The pet food industry: an innovative distribution channel for marketing feed products from welfare friendly production to consumers? Int J Food Syst Dyn 8(3):250–261
Google Scholar
Pradhan RA, Arshad M, Ullah A (2020) Solvent-free rapid ethenolysis of fatty esters from spent hen and other lipidic feedstock with high turnover numbers. J Ind Eng Chem 84:42–45
Article
CAS
Google Scholar
Pym R (2013) Poultry genetics and breeding in developing countries. Poultry Development Review FAO, pp 80–83
Rajeshwar PK, Malav OP, Mehta N, Chatli MK, Kumar P, Wagh RV (2018) Development of shelf stable spent hen meat kachori incorporated with prebiotic fibers. Int J Livest Res 8(11):341–355
Google Scholar
Regulations, C. o. F. (2016) Cattle materials prohibited in animal food or feed to prevent the transmission of bovine spongiform encephalopathy. https://www.ecfr.gov/current/title-21/chapter-I/subchapter-E/part-589/subpart-B/section-589.2001. Accessed 15 Sept 2021
Rennard BO, Ertl RF, Gossman GL, Robbins RA, Rennard SI (2000) Chicken soup inhibits neutrophil chemotaxis in vitro. Chest 118(4):1150–1157
Article
CAS
PubMed
Google Scholar
Rennard SI, Kalil AC, Casaburi R (2020) Chicken Soup in the Time of COVID. Chest 158(3):864–865
Article
CAS
PubMed
Google Scholar
Rojas O, Stein H (2013) Concentration of digestible and metabolizable energy and digestibility of amino acids in chicken meal, poultry byproduct meal, hydrolyzed porcine intestines, a spent hen–soybean meal mixture, and conventional soybean meal fed to weanling pigs. J Anim Sci 91(7):3220–3230
Article
CAS
PubMed
Google Scholar
Sabikun N, Bakhsh A, Rahman MS, Hwang Y-H, Joo S-T (2021) Evaluation of chicken nugget properties using spent hen meat added with milk fat and potato mash at different levels. J Food Sci Technol 58:2783–2791
Article
CAS
PubMed
Google Scholar
Safder M, Temelli F, Ullah A (2019a) Extraction, optimization, and characterization of lipids from spent hens: an unexploited sustainable bioresource. J Clean Prod 206:622–630
Article
CAS
Google Scholar
Safder M, Temelli F, Ullah A (2019b) Supercritical CO2 extraction and solvent-free rapid alternative bioepoxy production from spent hens. J CO2 Util 34:335–342
Article
CAS
Google Scholar
Safder M, Temelli F, Ullah A (2020) Lipid-derived hybrid bionanocomposites from spent hens. Mater Today Commun 25:101327
Article
CAS
Google Scholar
Saketkhoo K, Januszkiewicz A, Sackner MA (1978) Effects of drinking hot water, cold water, and chicken soup on nasal mucus velocity and nasal airflow resistance. Chest 74(4):408–410
Article
CAS
PubMed
Google Scholar
Sangtherapitikul O (2004) Utilization of spent hens as a flavoring base. Master of Science, Mississippi State University, USA
Sarkar B, Upadhyay S, Gogoi P, Das A, Hazarika M, Rahman Z, Datta A (2019a) Development and quality evaluation of instant soup mix incorporated with spent hen meat shred. Int J Livest Res 7:24–30
Google Scholar
Sarkar B, Upadhyay S, Gogoi P, Datta A, Rahman Z, Chowdhury S (2019b) Utilization of spent hen meat for soup: a review. Int J Curr Microbiol Appl Sci 8(2):2702–2709
Article
CAS
Google Scholar
Seidler, E. (2003). Egg marketing—a guide for the production and sale of eggs. Chapter 1—Egg production. FAO Agricultural Services Bulletin.
Semwogerere F, Neethling J, Muchenje V, Hoffman LC (2019) Meat quality, fatty acid profile, and sensory attributes of spent laying hens fed expeller press canola meal or a conventional diet. Poult Sci 98(9):3557–3570
Article
CAS
PubMed
Google Scholar
Shahbandeh M (2021) Number of chickens worldwide from 1990 to 2019. Statista. https://www.statista.com/statistics/263962/number-of-chickens-worldwide-since-1990/. Accessed 31 July 2021
Sharma S, Vaidya D (2018) Application of kiwifruit protease enzyme for tenderization of spent hen chicken. J Pharmacogn Phytochem 7:581–584
CAS
Google Scholar
Singh R, Rao K, Anjaneyulu A, Patil G (2001) Moisture sorption properties of smoked chicken sausages from spent hen meat. Food Res Int 34(2–3):143–148
Article
Google Scholar
Singh T, Chatli MK, Mehta N, Kumar P, Malav OP (2015) Effect of carrot powder on the quality attributes of fibre-enriched spent hen meat cutlets. J Anim Res 5(4):737–742
Article
Google Scholar
Sorapukdee S, Uesakulrungrueng C, Pilasombut K (2016) Effects of humectant and roasting on physicochemical and sensory properties of jerky made from spent hen meat. Korean J Food Sci Anim Resour 36(3):326
Article
PubMed
PubMed Central
Google Scholar
Spencer JL (2011) The effect of different intermediate amendments on pH, ammonia, carbon dioxide and methane emissions from composting poultry deadstock. University of Guelph.
Toldrá F, Reig M, Aristoy M-C, Mora L (2018) Generation of bioactive peptides during food processing. Food Chem 267:395–404
Article
CAS
PubMed
Google Scholar
Udenigwe CC, Howard A (2013) Meat proteome as source of functional biopeptides. Food Res Int 54(1):1021–1032
Article
CAS
Google Scholar
Udenigwe CC, Girgih AT, Mohan A, Gong M, Malomo SA, Aluko RE (2017) Antihypertensive and bovine plasma oxidation-inhibitory activities of spent hen meat protein hydrolysates. J Food Biochem 41(4):e12378. https://doi.org/10.1111/jfbc.12378
Article
CAS
Google Scholar
Umaraw P, Chauhan G (2018) Quality characteristics of spent hen meat powder incorporated whole wheat breads. Nutr Food Sci 48(4):579–588
Article
Google Scholar
Wang C, Wu J (2012) Preparation and characterization of adhesive from spent hen proteins. Int J Adhes Adhes 36:8–14
Article
CAS
Google Scholar
Wang H, Wu J, Betti M (2013) Chemical, rheological and surface morphologic characterisation of spent hen proteins extracted by pH-shift processing with or without the presence of cryoprotectants. Food Chem 139(1–4):710–719
Article
CAS
PubMed
Google Scholar
Wang X, Hong H, Wu J (2019a) Hen collagen hydrolysate alleviates UVA-induced damage in human dermal fibroblasts. J Funct Foods 63:103574
Article
CAS
Google Scholar
Wang X, Son M, Meram C, Wu J (2019b) Mechanism and potential of egg consumption and egg bioactive components on type-2 diabetes. Nutrients 11(2):357
Article
CAS
PubMed Central
Google Scholar
Williams S, Damron B (1998) Sensory and objective characteristics of broiler meat from commercial broilers fed rendered spent hen meal. Poult Sci 77(9):1441–1445
Article
CAS
PubMed
Google Scholar
Williams S, Damron B (1999) Sensory and fatty acid profile of eggs from commercial hens fed rendered spent hen meal. Poult Sci 78(4):614–617
Article
CAS
PubMed
Google Scholar
Xiang H, Gao J, Yu B, Zhou H, Cai D, Zhang Y et al (2014) Early Holocene chicken domestication in northern China. Proc Natl Acad Sci 111(49):17564–17569
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Q, Singh N, Hong H, Yan X, Yu W, Jiang X et al (2019) Hen protein-derived peptides as the blockers of human bitter taste receptors T2R4, T2R7 and T2R14. Food Chem 283:621–627. https://doi.org/10.1016/j.foodchem.2019.01.059
Article
CAS
PubMed
Google Scholar
Yu W, Field CJ, Wu J (2018a) Purification and identification of anti-inflammatory peptides from spent hen muscle proteins hydrolysate. Food Chem 253:101–107
Article
CAS
PubMed
Google Scholar
Yu W, Field CJ, Wu J (2018b) A spent hen muscle protein hydrolysate: a potential IL-10 stimulator in a murine model. Food Funct 9(9):4714–4719
Article
CAS
PubMed
Google Scholar
Yusop SM, Nadalian M, Babji AS, Mustapha WAW, Forghani B, Azman MA (2016) Production of antihypertensive elastin peptides from waste poultry skin. Int J Food Eng 2:21–25
Google Scholar
Zahara I, Arshad M, Anne MN, Siddique T, Ullah A (2021) Feather keratin derived sorbents for the treatment of wastewater produced during energy generation processes. Chemosphere 273:128545. https://doi.org/10.1016/j.chemosphere.2020.128545
Article
CAS
PubMed
Google Scholar
Zubair M (2017). Proteins derived bionanocomposites from poultry by-product for food packaging applications. Master of Science, University of Alberta. Edmonton, Alberta, Canada
Zubair M, Wu J, Ullah A (2019) Hybrid bionanocomposites from spent hen proteins. ACS Omega 4(2):3772–3781
Article
CAS
PubMed
PubMed Central
Google Scholar