Abdullah MF et al (2020) Effect of carbon/nitrogen ratio and ferric ion on the production of biohydrogen from palm oil mill effluent (POME). Biocatal Agric Biotechnol 23:101445. https://doi.org/10.1016/j.bcab.2019.101445
Article
Google Scholar
Abendroth C et al (2015) Eubacteria and archaea communities in seven mesophile anaerobic digester plants in Germany. Biotechnol Biofuels 8:1–10. https://doi.org/10.1186/s13068-015-0271-6
Article
CAS
Google Scholar
Akhbari A et al (2021) Start-up study of biohydrogen production from palm oil mill effluent in a lab-scale up-flow anaerobic sludge blanket fixed-film reactor. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.12.125
Article
Google Scholar
Alvarado-Cuevas ZD et al (2015) Biohydrogen production using psychrophilic bacteria isolated from Antarctica. Int J Hydrogen Energy 40:7586–7592. https://doi.org/10.1016/j.ijhydene.2014.10.063
Article
CAS
Google Scholar
Alvarez-Guzmán CL et al (2020) Biohydrogen production from cheese whey powder by Enterobacter asburiae: effect of operating conditions on hydrogen yield and chemometric study of the fermentative metabolites. Energy Rep 6:1170–1180. https://doi.org/10.1016/j.egyr.2020.04.038
Article
Google Scholar
Asadi N, Zilouei H (2017) Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Biores Technol 227:335–344. https://doi.org/10.1016/j.biortech.2016.12.073
Article
CAS
Google Scholar
Audu JO et al (2020) Dark fermentation and bioelectrochemical systems for enhanced biohydrogen production from palm oil mill effluent: current progress, potentials, and future perspectives. In: Zakaria ZA, Boopathy R, Dib JR (eds) Valorisation of agro-industrial residues—Volume I: Biological approaches. Springer, Cham, pp 1–35
Google Scholar
Audu JO et al (2021) Optimization of the operational parameters for mesophilic biohydrogen production from palm oil mill effluent using enriched mixed culture. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01488-9
Article
Google Scholar
Azman NF et al (2016) Biohydrogen production from de-oiled rice bran as sustainable feedstock in fermentative process. Int J Hydrogen Energy 41:145–156. https://doi.org/10.1016/j.ijhydene.2015.10.018
Article
CAS
Google Scholar
Badiei M et al (2012) Microbial community analysis of mixed anaerobic microflora in suspended sludge of ASBR producing hydrogen from palm oil mill effluent. Int J Hydrogen Energy 37:3169–3176. https://doi.org/10.1016/j.ijhydene.2011.11.063
Article
CAS
Google Scholar
Bando Y et al (2013) A microbiological study of biohydrogen production from beer lees. Int J Hydrogen Energy 38:2709–2718. https://doi.org/10.1016/j.ijhydene.2012.11.142
Article
CAS
Google Scholar
Beckers L et al (2013) Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Biores Technol 133:109–117. https://doi.org/10.1016/j.biortech.2012.12.168
Article
CAS
Google Scholar
Berg G et al (2020) Microbiome definition re-visited: old concepts and new challenges. Microbiome 8:1–22. https://doi.org/10.1186/s40168-020-00875-0
Article
Google Scholar
Bisaillon A et al (2006) The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. Int J Hydrogen Energy 31:1504–1508. https://doi.org/10.1016/j.ijhydene.2006.06.016
Article
CAS
Google Scholar
Cabrol L et al (2017) Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. FEMS Microbiol Rev 41:158–181. https://doi.org/10.1093/femsre/fuw043
Article
CAS
PubMed
Google Scholar
Campanaro S et al (2016) Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels 9:1–17. https://doi.org/10.1186/s13068-016-0441-1
Article
CAS
Google Scholar
Campanaro S et al (2020) New insights from the biogas microbiome by comprehensive genome-resolved metagenomics of nearly 1600 species originating from multiple anaerobic digesters. Biotechnol Biofuels 13:25. https://doi.org/10.1186/s13068-020-01679-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Castellano-Hinojosa A et al (2018) New concepts in anaerobic digestion processes: recent advances and biological aspects. Appl Microbiol Biotechnol 102:5065–5076. https://doi.org/10.1007/s00253-018-9039-9
Article
CAS
PubMed
Google Scholar
Chang S et al (2011) Evaluation of different pretreatment methods for preparing hydrogen-producing seed inocula from waste activated sludge. Renew Energy 36:1517–1522. https://doi.org/10.1016/j.renene.2010.11.023
Article
CAS
Google Scholar
Chen Y et al (2021) Comparison of fermentative hydrogen production from glycerol using immobilized and suspended mixed cultures. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2021.01.003
Article
Google Scholar
Chia WY et al (2020) Outlook on biorefinery potential of palm oil mill effluent for resource recovery. J Environ Chem Eng 8:104519. https://doi.org/10.1016/j.jece.2020.104519
Article
CAS
Google Scholar
Chiariotti A, Crisà A (2018) Bio-hydrogen production from buffalo waste with rumen inoculum and metagenomic characterization of bacterial and archaeal community. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2018.00013
Article
Google Scholar
Chistoserdova L (2009) Functional metagenomics: recent advances and future challenges. Biotechnol Genet Eng Rev 26:335–352. https://doi.org/10.5661/bger-26-335
Article
Google Scholar
Cho S-K et al (2018) Effects of low-strength ultrasonication on dark fermentative hydrogen production: start-up performance and microbial community analysis. Appl Energy 219:34–41. https://doi.org/10.1016/j.apenergy.2018.03.047
Article
CAS
Google Scholar
Choiron M et al (2020) Biohydrogen production improvement using hot compressed water pretreatment on sake brewery waste. Int J Hydrogen Energy 45:17220–17232. https://doi.org/10.1016/j.ijhydene.2020.04.199
Article
CAS
Google Scholar
Chong M-L et al (2009) Biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent. Int J Hydrogen Energy 34:764–771. https://doi.org/10.1016/j.ijhydene.2008.10.095
Article
CAS
Google Scholar
Conklin A et al (2006) Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion. Water Environ Res 78:486–496. https://doi.org/10.2175/106143006x95393
Article
CAS
PubMed
Google Scholar
Costa JB et al (2011) The optimization of biohydrogen production by bacteria using residual glycerol from biodiesel synthesis. J Environ Sci Health Part A 46:1461–1468. https://doi.org/10.1080/10934529.2011.609036
Article
CAS
Google Scholar
Dada O et al (2013) Biohydrogen production from ricebran using Clostridium saccharoperbutylacetonicum N1–4. Int J Hydrogen Energy 38:15063–15073. https://doi.org/10.1016/j.ijhydene.2013.07.048
Article
CAS
Google Scholar
Das D (2017) A road map on biohydrogen production from organic wastes. INAE Letters 2:153–160. https://doi.org/10.1007/s41403-017-0031-y
Article
Google Scholar
Dueholm MS et al (2021) MiDAS 4: a global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants. bioRxiv. https://doi.org/10.1101/2021.07.06.451231
Article
Google Scholar
Ergal İ et al (2020) Biohydrogen production beyond the Thauer limit by precision design of artificial microbial consortia. Commun Biol 3:443. https://doi.org/10.1038/s42003-020-01159-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Escobar-Zepeda A et al (2015) The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front Genet 6:348. https://doi.org/10.3389/fgene.2015.00348
Article
CAS
PubMed
PubMed Central
Google Scholar
Estevam A et al (2018) Production of biohydrogen from brewery wastewater using Klebsiella pneumoniae isolated from the environment. Int J Hydrogen Energy 43:4276–4283. https://doi.org/10.1016/j.ijhydene.2018.01.052
Article
CAS
Google Scholar
García-Depraect O, León-Becerril E (2018) Fermentative biohydrogen production from tequila vinasse via the lactate-acetate pathway: operational performance, kinetic analysis and microbial ecology. Fuel 234:151–160. https://doi.org/10.1016/j.fuel.2018.06.126
Article
CAS
Google Scholar
Garritano AdN et al (2017) Efficient biohydrogen production via dark fermentation from hydrolyzed palm oil mill effluent by non-commercial enzyme preparation. Int J Hydrogen Energy 42:29166–29174. https://doi.org/10.1016/j.ijhydene.2017.10.025
Article
CAS
Google Scholar
Ghimire A et al (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95. https://doi.org/10.1016/j.apenergy.2015.01.045
Article
CAS
Google Scholar
Gonzalez-Martinez A et al (2016) Archaeal and bacterial community dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester. Appl Microbiol Biotechnol 100:6013–6033. https://doi.org/10.1007/s00253-016-7393-z
Article
CAS
PubMed
Google Scholar
Harun I et al (2012) Hydrogen production performance by Enterobacter cloacae KBH3 isolated from termite guts. Int J Hydrogen Energy 37:15052–15061. https://doi.org/10.1016/j.ijhydene.2012.07.101
Article
CAS
Google Scholar
Hassa J et al (2018) Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol 102:5045–5063. https://doi.org/10.1007/s00253-018-8976-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Hay JXW et al (2013) Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overview, economics, and future prospects of hydrogen usage. Biofuels Bioprod Biorefin 7:334–352. https://doi.org/10.1002/bbb.1403
Article
CAS
Google Scholar
Hsieh P-H et al (2016) Explore the possible effect of TiO2 and magnetic hematite nanoparticle addition on biohydrogen production by Clostridium pasteurianum based on gene expression measurements. Int J Hydrogen Energy 41:21685–21691. https://doi.org/10.1016/j.ijhydene.2016.06.197
Article
CAS
Google Scholar
Jamali NS et al (2017) Particle size variations of activated carbon on biofilm formation in thermophilic biohydrogen production from palm oil mill effluent. Energy Convers Manage 141:354–366. https://doi.org/10.1016/j.enconman.2016.09.067
Article
CAS
Google Scholar
Jamali NS et al (2019) Thermophilic biohydrogen production from palm oil mill effluent: effect of immobilized cells on granular activated carbon in fluidized bed reactor. Food Bioprod Process 117:231–240. https://doi.org/10.1016/j.fbp.2019.07.012
Article
CAS
Google Scholar
Jia X et al (2017) Metaproteomic analysis of the relationship between microbial community phylogeny, function and metabolic activity during biohydrogen-methane coproduction under short-term hydrothermal pretreatment from food waste. Biores Technol 245:1030–1039. https://doi.org/10.1016/j.biortech.2017.08.180
Article
CAS
Google Scholar
Kamal S et al (2011) Pre-treatment effect of palm oil mill effluent (POME) during hydrogen production by a local isolate Clostridium butyricum. Int J Adv Sci Eng Inf Technol 2:54–60. https://doi.org/10.18517/ijaseit.2.4.214
Article
Google Scholar
Kanchanasuta S et al (2017) Stability of Clostridium butyricum in biohydrogen production from non-sterile food waste. Int J Hydrogen Energy 42:3454–3465. https://doi.org/10.1016/j.ijhydene.2016.09.111
Article
CAS
Google Scholar
Kaza S et al (2018) What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications, Washington
Book
Google Scholar
Keskin T et al (2019) Effect of percolation frequency on biohydrogen production from fruit and vegetable wastes by dry fermentation. Int J Hydrogen Energy 44:18767–18775. https://doi.org/10.1016/j.ijhydene.2018.12.099
Article
CAS
Google Scholar
Khongkliang P et al (2019) High efficient biohydrogen production from palm oil mill effluent by two-stage dark fermentation and microbial electrolysis under thermophilic condition. Int J Hydrogen Energy 44:31841–31852. https://doi.org/10.1016/j.ijhydene.2019.10.022
Article
CAS
Google Scholar
Kivistö A et al (2013) Non-sterile process for biohydrogen and 1,3-propanediol production from raw glycerol. Int J Hydrogen Energy 38:11749–11755. https://doi.org/10.1016/j.ijhydene.2013.06.119
Article
CAS
Google Scholar
Kraemer JT, Bagley DM (2007) Improving the yield from fermentative hydrogen production. Biotech Lett 29:685–695. https://doi.org/10.1007/s10529-006-9299-9
Article
CAS
Google Scholar
Kumar G et al (2018) Insights into evolutionary trends in molecular biology tools in microbial screening for biohydrogen production through dark fermentation. Int J Hydrogen Energy 43:19885–19901. https://doi.org/10.1016/j.ijhydene.2018.09.040
Article
CAS
Google Scholar
Kumar G et al (2020) Application of molecular techniques in biohydrogen production as a clean fuel. Sci Total Environ 722:137795. https://doi.org/10.1016/j.scitotenv.2020.137795
Article
CAS
PubMed
Google Scholar
Laothanachareon T et al (2014) Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing. J Environ Manage 144:143–151. https://doi.org/10.1016/j.jenvman.2014.05.019
Article
CAS
PubMed
Google Scholar
Laurent B et al (2012) Effects of hydrogen partial pressure on fermentative biohydrogen production by a chemotropic Clostridium bacterium in a new horizontal rotating cylinder reactor. Energy Procedia 29:34–41. https://doi.org/10.1016/j.egypro.2012.09.006
Article
CAS
Google Scholar
Lay C-H et al (2010) Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation. Int J Hydrogen Energy 35:13445–13451. https://doi.org/10.1016/j.ijhydene.2009.11.128
Article
CAS
Google Scholar
Leaño EP et al (2012) Ultrasonic pretreatment of palm oil mill effluent: impact on biohydrogen production, bioelectricity generation, and underlying microbial communities. Int J Hydrogen Energy 37:12241–12249. https://doi.org/10.1016/j.ijhydene.2012.06.007
Article
CAS
Google Scholar
Li W et al (2017) Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: viability, performance and microbial community evaluation. Appl Energy 189:613–622. https://doi.org/10.1016/j.apenergy.2016.12.101
Article
CAS
Google Scholar
Li Z et al (2018) Anaerobic co-digestion of sewage sludge and food waste for hydrogen and VFA production with microbial community analysis. Waste Manage 78:789–799. https://doi.org/10.1016/j.wasman.2018.06.046
Article
CAS
Google Scholar
Li H et al (2020) Effects of harvest month on biochemical composition of alligator weed for biohydrogen and biomethane cogeneration: identifying critical variations in microbial communities. Int J Hydrogen Energy 45:4161–4173. https://doi.org/10.1016/j.ijhydene.2019.11.208
Article
CAS
Google Scholar
Lim JW et al (2020) Chapter one—the microbiome driving anaerobic digestion and microbial analysis. In: Li Y, Khanal SK (eds) Advances in bioenergy. Elsevier, Amserdam, pp 1–61
Google Scholar
Lin C-Y et al (2011) A pilot-scale high-rate biohydrogen production system with mixed microflora. Int J Hydrogen Energy 36:8758–8764. https://doi.org/10.1016/j.ijhydene.2010.07.115
Article
CAS
Google Scholar
Liu C-M et al (2013) Biohydrogen production evaluation from rice straw hydrolysate by concentrated acid pre-treatment in both batch and continuous systems. Int J Hydrogen Energy 38:15823–15829. https://doi.org/10.1016/j.ijhydene.2013.07.055
Article
CAS
Google Scholar
Liu H et al (2018) Characteristics of hydrogen-producing enrichment cultures from marine sediment using macroalgae Laminaria japonica as a feedstock. J Biosci Bioeng 126:710–714. https://doi.org/10.1016/j.jbiosc.2018.05.012
Article
CAS
PubMed
Google Scholar
Liu Z et al (2020) Network analyses in microbiome based on high-throughput multi-omics data. Brief Bioinform 22:1639–1655. https://doi.org/10.1093/bib/bbaa005
Article
CAS
PubMed Central
Google Scholar
Łukajtis R et al (2018) Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev 91:665–694. https://doi.org/10.1016/j.rser.2018.04.043
Article
CAS
Google Scholar
Maaroff RM et al (2019) Biohydrogen production from palm oil mill effluent (POME) by two stage anaerobic sequencing batch reactor (ASBR) system for better utilization of carbon sources in POME. Int J Hydrogen Energy 44:3395–3406. https://doi.org/10.1016/j.ijhydene.2018.06.013
Article
CAS
Google Scholar
Mahato RK et al (2020) Biohydrogen production from fruit waste by Clostridium strain BOH3. Renew Energy 153:1368–1377. https://doi.org/10.1016/j.renene.2020.02.092
Article
CAS
Google Scholar
Mahmod SS et al (2017) Pretreatment conditions of palm oil mill effluent (POME) for thermophilic biohydrogen production by mixed culture. Int J Hydrogen Energy 42:27512–27522. https://doi.org/10.1016/j.ijhydene.2017.07.178
Article
CAS
Google Scholar
Mahmod SS et al (2019) Operation performance of up-flow anaerobic sludge blanket (UASB) bioreactor for biohydrogen production by self-granulated sludge using pre-treated palm oil mill effluent (POME) as carbon source. Renew Energy 134:1262–1272. https://doi.org/10.1016/j.renene.2018.09.062
Article
CAS
Google Scholar
Mamimin C et al (2012) Simultaneous thermophilic hydrogen production and phenol removal from palm oil mill effluent by Thermoanaerobacterium-rich sludge. Int J Hydrogen Energy 37:15598–15606. https://doi.org/10.1016/j.ijhydene.2012.04.062
Article
CAS
Google Scholar
Martinez-Burgos WJ et al (2020) Biohydrogen production in cassava processing wastewater using microbial consortia: process optimization and kinetic analysis of the microbial community. Biores Technol 309:123331. https://doi.org/10.1016/j.biortech.2020.123331
Article
CAS
Google Scholar
Mazareli RC et al (2020) Metagenomic analysis of autochthonous microbial biomass from banana waste: Screening design of factors that affect hydrogen production. Biomass Bioenergy 138:105573. https://doi.org/10.1016/j.biombioe.2020.105573
Article
CAS
Google Scholar
McIlroy SJ et al (2015) MiDAS: the field guide to the microbes of activated sludge. Database. https://doi.org/10.1093/database/bav062
Article
PubMed
PubMed Central
Google Scholar
Menzel T et al (2020) Role of microbial hydrolysis in anaerobic digestion. Energies 13:5555. https://doi.org/10.3390/en13215555
Article
CAS
Google Scholar
Mishra P, Das D (2014) Biohydrogen production from Enterobacter cloacae IIT-BT 08 using distillery effluent. Int J Hydrogen Energy 39:7496–7507. https://doi.org/10.1016/j.ijhydene.2013.08.100
Article
CAS
Google Scholar
Mishra P et al (2017) Fermentative hydrogen production from indigenous mesophilic strain Bacillus anthracis PUNAJAN 1 newly isolated from palm oil mill effluent. Int J Hydrogen Energy 42:16054–16063. https://doi.org/10.1016/j.ijhydene.2017.05.120
Article
CAS
Google Scholar
Mishra P et al (2019) Outlook of fermentative hydrogen production techniques: an overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energ Strat Rev 24:27–37. https://doi.org/10.1016/j.esr.2019.01.001
Article
Google Scholar
Mohammadi P et al (2014) High-rate fermentative hydrogen production from palm oil mill effluent in an up-flow anaerobic sludge blanket-fixed film reactor. Chem Eng Res Des 92:1811–1817. https://doi.org/10.1016/j.cherd.2014.04.023
Article
CAS
Google Scholar
Mohammed A et al (2018) Biohydrogen production by antarctic psychrotolerant Klebsiella sp. ABZ11. Pol J Microbiol 67:283. https://doi.org/10.21307/pjm-2018-033
Article
PubMed
PubMed Central
Google Scholar
Moreno-Andrade I et al (2015) Biohydrogen from food waste in a discontinuous process: Effect of HRT and microbial community analysis. Int J Hydrogen Energy 40:17246–17252. https://doi.org/10.1016/j.ijhydene.2015.04.084
Article
CAS
Google Scholar
Nitipan S et al (2014) Microbial community analysis of thermophilic mixed culture sludge for biohydrogen production from palm oil mill effluent. Int J Hydrogen Energy 39:19285–19293. https://doi.org/10.1016/j.ijhydene.2014.05.139
Article
CAS
Google Scholar
Nizzy AM et al (2020) Identification of hydrogen gas producing anaerobic bacteria isolated from sago industrial effluent. Curr Microbiol 77:2544–2553. https://doi.org/10.1007/s00284-020-02092-2
Article
CAS
PubMed
Google Scholar
Noparat P et al (2012) Potential for using enriched cultures and thermotolerant bacterial isolates for production of biohydrogen from oil palm sap and microbial community analysis. Int J Hydrogen Energy 37:16412–16420. https://doi.org/10.1016/j.ijhydene.2012.02.103
Article
CAS
Google Scholar
Nurmi J et al (2002) High-performance real-time quantitative RT-PCR using lanthanide probes and a dual-temperature hybridization assay. Anal Chem 74:3525–3532. https://doi.org/10.1021/ac020093y
Article
CAS
PubMed
Google Scholar
Oliveira CA et al (2020) Thermophilic biohydrogen production from sugarcane molasses under low pH: metabolic and microbial aspects. Int J Hydrogen Energy 45:4182–4192. https://doi.org/10.1016/j.ijhydene.2019.12.013
Article
CAS
Google Scholar
Ortigueira J et al (2015) Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from Scenedesmus obliquus microalga biomass. Fuel 153:128–134. https://doi.org/10.1016/j.fuel.2015.02.093
Article
CAS
Google Scholar
O-Thong S (2017) Microbial population optimization for control and improvement of dark hydrogen fermentation. In: Jozala AF (ed) Fermentation processes. IntechOpen, London
Google Scholar
O-Thong S, et al (2008) 16S rRNA-targeted probes for specific detection of Thermoanaerobacterium spp., Thermoanaerobacterium thermosaccharolyticum, and Caldicellulosiruptor spp. by fluorescent in situ hybridization in biohydrogen producing systems. Int J Hydrogen Energy 33:6082–6091. https://doi.org/10.1016/j.ijhydene.2008.07.094
Article
CAS
Google Scholar
O-Thong S, et al (2012) Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production. Appl Energy 93:648–654. https://doi.org/10.1016/j.apenergy.2011.12.092
Article
CAS
Google Scholar
Pachapur VL et al (2019) Seed pretreatment for increased hydrogen production using mixed-culture systems with advantages over pure-culture systems. Energies 12:530. https://doi.org/10.3390/en12030530
Article
CAS
Google Scholar
Paillet F et al (2019) Improvement of biohydrogen production from glycerol in micro-oxidative environment. Int J Hydrogen Energy 44:17802–17812. https://doi.org/10.1016/j.ijhydene.2019.05.082
Article
CAS
Google Scholar
Panin S et al (2020) Biohydrogen and biogas production from mashed and powdered vegetable residues by an enriched microflora in dark fermentation. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.09.246
Article
Google Scholar
Pason P et al (2020) One-step biohydrogen production from cassava pulp using novel enrichment of anaerobic thermophilic bacteria community. Biocatal Agric Biotechnol 27:101658. https://doi.org/10.1016/j.bcab.2020.101658
Article
Google Scholar
Patel SKS et al (2018) Beyond the theoretical yields of dark-fermentative biohydrogen. Indian J Microbiol 58:529–530. https://doi.org/10.1007/s12088-018-0759-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Plangklang P et al (2012) Enhanced bio-hydrogen production from sugarcane juice by immobilized Clostridium butyricum on sugarcane bagasse. Int J Hydrogen Energy 37:15525–15532. https://doi.org/10.1016/j.ijhydene.2012.02.186
Article
CAS
Google Scholar
Pugazhendhi A et al (2017) Process performance of biohydrogen production using glucose at various HRTs and assessment of microbial dynamics variation via q-PCR. Int J Hydrogen Energy 42:27550–27557. https://doi.org/10.1016/j.ijhydene.2017.06.184
Article
CAS
Google Scholar
Pugazhendhi A et al (2019) Microbiome involved in anaerobic hydrogen producing granules: a mini review. Biotechnol Reports 21:e00301–e00301. https://doi.org/10.1016/j.btre.2018.e00301
Article
Google Scholar
Puhulwella RG et al (2014) Mesophilic biohydrogen production by Clostridium butyricum CWBI1009 in trickling biofilter reactor. Int J Hydrogen Energy 39:16902–16913. https://doi.org/10.1016/j.ijhydene.2014.08.087
Article
CAS
Google Scholar
Rambabu K et al (2020) Enhanced biohydrogen production from date seeds by Clostridium thermocellum ATCC 27405. Int J Hydrogen Energy 45:22271–22280. https://doi.org/10.1016/j.ijhydene.2019.06.133
Article
CAS
Google Scholar
Rambabu K et al (2021) Augmented biohydrogen production from rice mill wastewater through nano-metal oxides assisted dark fermentation. Biores Technol 319:124243. https://doi.org/10.1016/j.biortech.2020.124243
Article
CAS
Google Scholar
Rasdi Z et al (2012) Kinetic analysis of biohydrogen production from anaerobically treated POME in bioreactor under optimized condition. Int J Hydrogen Energy 37:17724–17730. https://doi.org/10.1016/j.ijhydene.2012.08.095
Article
CAS
Google Scholar
Ravenschlag K et al (2001) Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Appl Environ Microbiol 67:387–395. https://doi.org/10.1128/AEM.67.1.387-395.2001
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosa D et al (2020) Biological hydrogen production from palm oil mill effluent (POME) by anaerobic consortia and Clostridium beijerinckii. J Biotechnol 323:17–23. https://doi.org/10.1016/j.jbiotec.2020.06.015
Article
CAS
PubMed
Google Scholar
Rubin BE et al (2020) Targeted genome editing of bacteria within microbial communities. bioRxiv. https://doi.org/10.1101/2020.07.17.209189
Article
Google Scholar
Saleem A et al (2020) Fermentation of simple and complex substrates to biohydrogen using pure Bacillus cereus RTUA and RTUB strains. Environ Technol Innov 18:100704. https://doi.org/10.1016/j.eti.2020.100704
Article
Google Scholar
Santos SC et al (2014) Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage. Biores Technol 159:55–63. https://doi.org/10.1016/j.biortech.2014.02.051
Article
CAS
Google Scholar
Saravanan A et al (2021) Biohydrogen from organic wastes as a clean and environment-friendly energy source: production pathways, feedstock types, and future prospects. Biores Technol 342:126021. https://doi.org/10.1016/j.biortech.2021.126021
Article
CAS
Google Scholar
Sarma S et al (2019) Homologous overexpression of hydrogenase and glycerol dehydrogenase in Clostridium pasteurianum to enhance hydrogen production from crude glycerol. Biores Technol 284:168–177. https://doi.org/10.1016/j.biortech.2019.03.074
Article
CAS
Google Scholar
Sen B, Suttar RR (2012) Mesophilic fermentative hydrogen production from sago starch-processing wastewater using enriched mixed cultures. Int J Hydrogen Energy 37:15588–15597. https://doi.org/10.1016/j.ijhydene.2012.04.027
Article
CAS
Google Scholar
Seon J et al (2014) Bacterial community structure in maximum volatile fatty acids production from alginate in acidogenesis. Biores Technol 157:22–27. https://doi.org/10.1016/j.biortech.2014.01.072
Article
CAS
Google Scholar
Sharma S et al (2020) Waste-to-energy nexus for circular economy and environmental protection: recent trends in hydrogen energy. Sci Total Environ 713:136633. https://doi.org/10.1016/j.scitotenv.2020.136633
Article
CAS
PubMed
Google Scholar
Sharpton TJ (2014) An introduction to the analysis of shotgun metagenomic data. Front Plant Sci 5:209. https://doi.org/10.3389/fpls.2014.00209
Article
PubMed
PubMed Central
Google Scholar
Sieber JR et al (2012) Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 66:429–452. https://doi.org/10.1146/annurev-micro-090110-102844
Article
CAS
PubMed
Google Scholar
Sikora A et al (2017) Anaerobic digestion: I. A common process ensuring energy flow and the circulation of matter in ecosystems. II. A tool for the production of gaseous biofuels. Ferment Processes 14:271. https://doi.org/10.5772/64645
Article
CAS
Google Scholar
Silva-Illanes F et al (2017) Impact of hydraulic retention time (HRT) and pH on dark fermentative hydrogen production from glycerol. Energy 141:358–367. https://doi.org/10.1016/j.energy.2017.09.073
Article
CAS
Google Scholar
Singh L et al (2013a) Biohydrogen production from palm oil mill effluent using immobilized mixed culture. J Ind Eng Chem 19:659–664. https://doi.org/10.1016/j.jiec.2012.10.001
Article
CAS
Google Scholar
Singh L et al (2013b) Application of immobilized upflow anaerobic sludge blanket reactor using Clostridium LS2 for enhanced biohydrogen production and treatment efficiency of palm oil mill effluent. Int J Hydrogen Energy 38:2221–2229. https://doi.org/10.1016/j.ijhydene.2012.12.004
Article
CAS
Google Scholar
Singh L et al (2013c) Biohydrogen production from palm oil mill effluent using immobilized Clostridium butyricum EB6 in polyethylene glycol. Process Biochem 48:294–298. https://doi.org/10.1016/j.procbio.2012.12.007
Article
CAS
Google Scholar
Singh S et al (2014) Biohydrogen production by Thermoanaerobacterium thermosaccharolyticum TERI S7 from oil reservoir flow pipeline. Int J Hydrogen Energy 39:4206–4214. https://doi.org/10.1016/j.ijhydene.2013.12.179
Article
CAS
Google Scholar
Soares LA et al (2018) Metagenomic analysis and optimization of hydrogen production from sugarcane bagasse. Biomass Bioenerg 117:78–85. https://doi.org/10.1016/j.biombioe.2018.07.018
Article
CAS
Google Scholar
Song W et al (2020) Improving biohydrogen production through dark fermentation of steam-heated acid pretreated Alternanthera philoxeroides by mutant Enterobacter aerogenes ZJU1. Sci Total Environ 716:134695. https://doi.org/10.1016/j.scitotenv.2019.134695
Article
CAS
PubMed
Google Scholar
Stolze Y et al (2016) Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants. Biotechnol Biofuels 9:1–18. https://doi.org/10.1186/s13068-016-0565-3
Article
CAS
Google Scholar
Taifor AF et al (2017) Elucidating substrate utilization in biohydrogen production from palm oil mill effluent by Escherichia coli. Int J Hydrogen Energy 42:5812–5819. https://doi.org/10.1016/j.ijhydene.2016.11.188
Article
CAS
Google Scholar
Tanikkul P et al (2019a) Thermophilic biohydrogen recovery from palm oil mill effluent. Int J Hydrogen Energy 44:5176–5181. https://doi.org/10.1016/j.ijhydene.2018.10.005
Article
CAS
Google Scholar
Tanikkul P et al (2019b) Ozonation aided mesophilic biohydrogen production from palm oil mill effluent. Int J Hydrogen Energy 44:5182–5188. https://doi.org/10.1016/j.ijhydene.2018.09.180
Article
CAS
Google Scholar
Tian Q-Q et al (2015) Enhanced biohydrogen production from sugarcane bagasse by Clostridium thermocellum supplemented with CaCO3. Biores Technol 197:422–428. https://doi.org/10.1016/j.biortech.2015.08.111
Article
CAS
Google Scholar
Tolvanen KES, Karp MT (2011) Molecular methods for characterizing mixed microbial communities in hydrogen-fermenting systems. Int J Hydrogen Energy 36:5280–5288. https://doi.org/10.1016/j.ijhydene.2011.01.029
Article
CAS
Google Scholar
Tonge DP et al (2014) Amplicon–based metagenomic analysis of mixed fungal samples using proton release amplicon sequencing. PLoS ONE 9:e93849. https://doi.org/10.1371/journal.pone.0093849
Article
CAS
PubMed
PubMed Central
Google Scholar
Ulhiza TA et al (2018) Optimization of culture conditions for biohydrogen production from sago wastewater by Enterobacter aerogenes using Response Surface Methodology. Int J Hydrogen Energy 43:22148–22158. https://doi.org/10.1016/j.ijhydene.2018.10.057
Article
CAS
Google Scholar
Vanwonterghem I et al (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 27:55–64. https://doi.org/10.1016/j.copbio.2013.11.004
Article
CAS
PubMed
Google Scholar
Vardar-Schara G et al (2008) Metabolically engineered bacteria for producing hydrogen via fermentation. Microb Biotechnol 1:107–125. https://doi.org/10.1111/j.1751-7915.2007.00009.x
Article
CAS
PubMed
Google Scholar
Venkiteshwaran K et al (2015) Relating anaerobic digestion microbial community and process function: supplementary issue: water microbiology. Microbiol Insights 8:37–44. https://doi.org/10.4137/MBI.S33593
Article
PubMed
Google Scholar
Viana MB et al (2019) The source of inoculum and the method of methanogenesis inhibition can affect biological hydrogen production from crude glycerol. BioEnergy Res 12:733–742. https://doi.org/10.1007/s12155-019-09994-5
Article
Google Scholar
Villa Montoya AC et al (2020) Optimization of key factors affecting hydrogen production from coffee waste using factorial design and metagenomic analysis of the microbial community. Int J Hydrogen Energy 45:4205–4222. https://doi.org/10.1016/j.ijhydene.2019.12.062
Article
CAS
Google Scholar
Wang J, Yin Y (2019) Progress in microbiology for fermentative hydrogen production from organic wastes. Crit Rev Environ Sci Technol 49:825–865. https://doi.org/10.1080/10643389.2018.1487226
Article
CAS
Google Scholar
Wang Y-Y et al (2011) Effects of various pretreatment methods of anaerobic mixed microflora on biohydrogen production and the fermentation pathway of glucose. Int J Hydrogen Energy 36:390–396. https://doi.org/10.1016/j.ijhydene.2010.09.092
Article
CAS
Google Scholar
Wang P et al (2018) Microbial characteristics in anaerobic digestion process of food waste for methane production—a review. Biores Technol 248:29–36. https://doi.org/10.1016/j.biortech.2017.06.152
Article
CAS
Google Scholar
Whang L-M et al (2011) Metabolic and energetic aspects of biohydrogen production of Clostridium tyrobutyricum: the effects of hydraulic retention time and peptone addition. Biores Technol 102:8378–8383. https://doi.org/10.1016/j.biortech.2011.03.101
Article
CAS
Google Scholar
Whipps J et al (1988) Mycoparasitism and plant disease control. In: Burge M (ed) Fungi in biological control systems. Manchester University Press, Manchester, pp 161–187
Google Scholar
Xu J-F et al (2016) Buffering action of acetate on hydrogen production by Ethanoligenens harbinense B49. Electron J Biotechnol 23:7–11. https://doi.org/10.1016/j.ejbt.2016.07.002
Article
CAS
Google Scholar
Yang G, Wang J (2019) Changes in microbial community structure during dark fermentative hydrogen production. Int J Hydrogen Energy 44:25542–25550. https://doi.org/10.1016/j.ijhydene.2019.08.039
Article
CAS
Google Scholar
Yin Y, Wang J (2017) Isolation and characterization of a novel strain Clostridium butyricum INET1 for fermentative hydrogen production. Int J Hydrogen Energy 42:12173–12180. https://doi.org/10.1016/j.ijhydene.2017.02.083
Article
CAS
Google Scholar
Yin Y, Wang J (2021) Predictive functional profiling of microbial communities in fermentative hydrogen production system using PICRUSt. Int J Hydrogen Energy 46:3716–3725. https://doi.org/10.1016/j.ijhydene.2020.10.246
Article
CAS
Google Scholar
Yossan S et al (2012) Effect of initial pH, nutrients and temperature on hydrogen production from palm oil mill effluent using thermotolerant consortia and corresponding microbial communities. Int J Hydrogen Energy 37:13806–13814. https://doi.org/10.1016/j.ijhydene.2012.03.151
Article
CAS
Google Scholar
Zainal BS et al (2018) Effects of process, operational and environmental variables on biohydrogen production using palm oil mill effluent (POME). Int J Hydrogen Energy 43:10637–10644. https://doi.org/10.1016/j.ijhydene.2017.10.167
Article
CAS
Google Scholar
Zainal BS et al (2019) UASFF start-up for biohydrogen and biomethane production from treatment of palm oil mill effluent. Int J Hydrogen Energy 44:20725–20737. https://doi.org/10.1016/j.ijhydene.2018.07.037
Article
CAS
Google Scholar
Zhang K et al (2011) Effects of various pretreatment methods on mixed microflora to enhance biohydrogen production from corn stover hydrolysate. J Environ Sci 23:1929–1936. https://doi.org/10.1016/S1001-0742(10)60679-1
Article
CAS
Google Scholar
Zhang L et al (2015) Effects of the ecological factors on hydrogen production and [Fe–Fe]-hydrogenase activity in Ethanoligenens harbinense YUAN-3. Int J Hydrogen Energy 40:6792–6797. https://doi.org/10.1016/j.ijhydene.2015.02.015
Article
CAS
Google Scholar
Zhang Y et al (2020) Effect of enzymolysis time on biohydrogen production from photo-fermentation by using various energy grasses as substrates. Biores Technol 305:123062. https://doi.org/10.1016/j.biortech.2020.123062
Article
CAS
Google Scholar