Ahmed Y, Rebets Y, Estévez MR et al (2020) Engineering of Streptomyces lividans for heterologous expression of secondary metabolite gene clusters. Microb Cell Factories 19:5. https://doi.org/10.1186/s12934-020-1277-8
Article
CAS
Google Scholar
Akhtar MK, Vijay D, Umbreen S et al (2018) Hydrogen peroxide-based fluorometric assay for real-time monitoring of SAM-dependent methyltransferases. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2018.00146
Article
PubMed
PubMed Central
Google Scholar
Attieh JM, Hanson AD, Saini HS (1995) Purification and characterization of a novel methyltransferase responsible for biosynthesis of halomethanes and methanethiol in Brassica oleracea. J Biol Chem 270:9250–9257. https://doi.org/10.1074/jbc.270.16.9250
Article
CAS
PubMed
Google Scholar
Awakawa T, Zhang L, Wakimoto T et al (2014) A methyltransferase initiates terpene cyclization in teleocidin B biosynthesis. J Am Chem Soc 136:9910–9913. https://doi.org/10.1021/ja505224r
Article
CAS
PubMed
Google Scholar
Bennett MR, Shepherd SA, Cronin VA, Micklefield J (2017) Recent advances in methyltransferase biocatalysis. Curr Opin Chem Biol 37:97–106. https://doi.org/10.1016/j.cbpa.2017.01.020
Article
CAS
PubMed
Google Scholar
Biastoff S, Teuber M, Zhou ZS, Dräger B (2006) Colorimetric activity measurement of a recombinant putrescine N-methyltransferase from Datura stramonium. Planta Med 72:1136–1141. https://doi.org/10.1055/s-2006-947191
Article
CAS
PubMed
Google Scholar
Blanche F, Debussche L, Thibaut D et al (1989) Purification and characterization of S-adenosyl-l-methionine: uroporphyrinogen III methyltransferase from Pseudomonas denitrificans. J Bacteriol 171:4222–4231. https://doi.org/10.1128/jb.171.8.4222-4231.1989
Article
CAS
PubMed
PubMed Central
Google Scholar
Borchardt RT, Cheng CF (1978) Purification and characterization of rat liver microsomal thiol methyltransferase. Biochim Biophys Acta BBA 522:340–353. https://doi.org/10.1016/0005-2744(78)90068-2
Article
CAS
PubMed
Google Scholar
Brendza KM, Haakenson W, Cahoon RE et al (2007) Phosphoethanolamine N-methyltransferase (PMT-1) catalyses the first reaction of a new pathway for phosphocholine biosynthesis in Caenorhabditis elegans. Biochem J 404:439–448. https://doi.org/10.1042/BJ20061815
Article
CAS
PubMed
PubMed Central
Google Scholar
Burgos ES, Walters RO, Huffman DM, Shechter D (2017) A simplified characterization of S-adenosyl-l-methionine-consuming enzymes with 1-step EZ-MTase: a universal and straightforward coupled-assay for in vitro and in vivo setting. Chem Sci 8:6601–6612. https://doi.org/10.1039/C7SC02830J
Article
CAS
PubMed
PubMed Central
Google Scholar
Chavali AK, Rhee SY (2017) Bioinformatics tools for the identification of gene clusters that biosynthesize specialized metabolites. Brief Bioinform 19:1022–1034. https://doi.org/10.1093/bib/bbx020
Article
CAS
PubMed Central
Google Scholar
Chen K, Arnold FH (2020) Engineering new catalytic activities in enzymes. Nat Catal 3:203–213. https://doi.org/10.1038/s41929-019-0385-5
Article
CAS
Google Scholar
Chen Z, Shen X, Wang J et al (2017) Establishing an Artificial pathway for de novo biosynthesis of vanillyl alcohol in Escherichia coli. Acs Synth Biol 6:1784–1792. https://doi.org/10.1021/acssynbio.7b00129
Article
CAS
PubMed
Google Scholar
Chen X, Shukal S, Zhang C (2019a) Integrating enzyme and metabolic engineering tools for enhanced α-ionone production. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.9b00860
Article
PubMed
PubMed Central
Google Scholar
Chen X, Zhang C, Lindley ND (2019b) Metabolic engineering strategies for sustainable terpenoid flavor and fragrance synthesis. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.9b06203
Article
PubMed
PubMed Central
Google Scholar
Christopher SA, Melnyk S, Jill James S, Kruger WD (2002) S-Adenosylhomocysteine, but not homocysteine, is toxic to yeast lacking cystathionine β-synthase. Mol Genet Metab 75:335–343. https://doi.org/10.1016/S1096-7192(02)00003-3
Article
CAS
PubMed
Google Scholar
Cimermancic P, Medema MH, Claesen J et al (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158:412–421. https://doi.org/10.1016/j.cell.2014.06.034
Article
CAS
PubMed
PubMed Central
Google Scholar
Coque J-JR, Alvarez-Rodríguez ML, Larriba G (2003) Characterization of an inducible chlorophenol O-methyltransferase from Trichoderma longibrachiatum involved in the formation of chloroanisoles and determination of its role in cork taint of wines. Appl Environ Microbiol 69:5089–5095. https://doi.org/10.1128/aem.69.9.5089-5095.2003
Article
CAS
PubMed
PubMed Central
Google Scholar
Coulter C, Kennedy JT, McRoberts WC, Harper DB (1993) Purification and properties of an S-adenosylmethionine: 2,4-disubstituted phenol O-methyltransferase from Phanerochaete chrysosporium. Appl Environ Microbiol 59:706–711. https://doi.org/10.1128/AEM.59.3.706-711.1993
Article
CAS
PubMed
PubMed Central
Google Scholar
Cravens A, Payne J, Smolke CD (2019) Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat Commun 10:2142. https://doi.org/10.1038/s41467-019-09848-w
Article
CAS
PubMed
PubMed Central
Google Scholar
Cress BF, Leitz QD, Kim DC et al (2017) CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microb Cell Factories 16:1–14. https://doi.org/10.1186/s12934-016-0623-3
Article
CAS
Google Scholar
Dalhoff C, Lukinavičius G, Klimas̆auskas S, Weinhold E, (2006) Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases. Nat Chem Biol 2:31–32. https://doi.org/10.1038/nchembio754
Article
CAS
PubMed
Google Scholar
Dong C, Schultz C, Liu W et al (2021) Identification of novel metabolic engineering targets for S-adenosyl-l-Methionine production in Saccharomyces cerevisiae via genome-scale engineering. Metab Eng. https://doi.org/10.1016/j.ymben.2021.03.005
Article
PubMed
Google Scholar
Dorgan KM, Wooderchak WL, Wynn DP et al (2006) An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases. Anal Biochem 350:249–255. https://doi.org/10.1016/j.ab.2006.01.004
Article
CAS
PubMed
Google Scholar
Drummond L, Kschowak MJ, Breitenbach J et al (2019) Expanding the isoprenoid building block repertoire with an IPP methyltransferase from Streptomyces monomycini. ACS Synth Biol 8:1303–1313. https://doi.org/10.1021/acssynbio.8b00525
Article
CAS
PubMed
Google Scholar
Duchin S, Vershinin Z, Levy D, Aharoni A (2015) A continuous kinetic assay for protein and DNA methyltransferase enzymatic activities. Epigenetics Chromatin 8:56. https://doi.org/10.1186/s13072-015-0048-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Duell ER, D’Agostino PM, Shapiro N et al (2019) Direct pathway cloning of the sodorifen biosynthetic gene cluster and recombinant generation of its product in E-coli. Microb Cell Factories 18:32. https://doi.org/10.1186/s12934-019-1080-6
Article
Google Scholar
Edwards R, Dixon RA (1991) Purification and characterization of S-adenosyl-l-methionine: caffeic acid 3-O-methyltransferase from suspension cultures of alfalfa (Medicago sativa L.). Arch Biochem Biophys 287:372–379. https://doi.org/10.1016/0003-9861(91)90492-2
Article
CAS
PubMed
Google Scholar
Fage CD, Isiorho EA, Liu Y et al (2015) The structure of SpnF, a standalone enzyme that catalyzes [4 + 2] cycloaddition. Nat Chem Biol 11:256–258. https://doi.org/10.1038/nchembio.1768
Article
CAS
PubMed
PubMed Central
Google Scholar
Francis DM, Thompson MF, Greaves MW (1980) The kinetic properties and reaction mechanism of histamine methyltransferase from human skin. Biochem J 187:819–828
Article
CAS
PubMed
PubMed Central
Google Scholar
Frenzel T, Zhou P, Floss HG (1990) Formation of 2-methyltryptophan in the biosynthesis of thiostrepton: isolation of S-adenosylmethionine:tryptophan 2-methyltransferase. Arch Biochem Biophys 278:35–40. https://doi.org/10.1016/0003-9861(90)90227-p
Article
CAS
PubMed
Google Scholar
Grocholski T, Dinis P, Niiranen L et al (2015) Divergent evolution of an atypical S-adenosyl-l-methionine-dependent monooxygenase involved in anthracycline biosynthesis. Proc Natl Acad Sci U S A 112:9866–9871. https://doi.org/10.1073/pnas.1501765112
Article
CAS
PubMed
PubMed Central
Google Scholar
Han G, Hu X, Qin T et al (2016) Metabolic engineering of Corynebacterium glutamicum ATCC13032 to produce S-adenosyl-l-methionine. Enzyme Microb Technol 83:14–21. https://doi.org/10.1016/j.enzmictec.2015.11.001
Article
CAS
PubMed
Google Scholar
Harper DB, Kennedy JT (1985) Purification and properties of S-adenosylmethionine: aldoxime O-methyltransferase from Pseudomonas sp. N.C.I.B. 11652. Biochem J 226:147–153. https://doi.org/10.1042/bj2260147
Article
CAS
PubMed
PubMed Central
Google Scholar
Hendricks CL, Ross JR, Pichersky E et al (2004) An enzyme-coupled colorimetric assay for S-adenosylmethionine-dependent methyltransferases. Anal Biochem 326:100–105. https://doi.org/10.1016/j.ab.2003.11.014
Article
CAS
PubMed
Google Scholar
Heo KT, Kang S-Y, Hong Y-S (2017) De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis. Microb Cell Factories 16:30. https://doi.org/10.1186/s12934-017-0644-6
Article
CAS
Google Scholar
Herbert AJ, Shepherd SA, Cronin VA et al (2020) Engineering orthogonal methyltransferases to create alternative bioalkylation pathways. Angew Chem Int Ed 59:14950–14956. https://doi.org/10.1002/anie.202004963
Article
CAS
Google Scholar
Hibi N, Fujita T, Hatano M et al (1992) Putrescine N-methyltransferase in cultured roots of Hyoscyamus albus: n-butylamine as a potent inhibitor of the transferase both in vitro and in vivo. Plant Physiol 100:826–835. https://doi.org/10.1104/pp.100.2.826
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu X, Quinn PJ, Wang Z et al (2012) Genetic modification and bioprocess optimization for S-adenosyl-l-methionine biosynthesis. Subcell Biochem 64:327–341. https://doi.org/10.1007/978-94-007-5055-5_16
Article
CAS
PubMed
Google Scholar
Huber TD, Wang F, Singh S et al (2016) Functional AdoMet isosteres resistant to classical AdoMet degradation pathways. ACS Chem Biol 11:2484–2491. https://doi.org/10.1021/acschembio.6b00348
Article
CAS
PubMed
PubMed Central
Google Scholar
Huffman MA, Fryszkowska A, Alvizo O et al (2019) Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 366:1255–1259. https://doi.org/10.1126/science.aay8484
Article
CAS
PubMed
Google Scholar
Ignea C, Pontini M, Motawia MS et al (2018) Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering. Nat Chem Biol 14:1090. https://doi.org/10.1038/s41589-018-0166-5
Article
CAS
PubMed
Google Scholar
James SJ, Melnyk S, Pogribna M et al (2002) Elevation in S-Adenosylhomocysteine and DNA hypomethylation: potential epigenetic mechanism for homocysteine-related pathology. J Nutr 132:2361S-2366S. https://doi.org/10.1093/jn/132.8.2361S
Article
CAS
PubMed
Google Scholar
Jin W-B, Wu S, Jian X-H et al (2018) A radical S-adenosyl-l-methionine enzyme and a methyltransferase catalyze cyclopropane formation in natural product biosynthesis. Nat Commun 9:2771. https://doi.org/10.1038/s41467-018-05217-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Katz L, Baltz RH (2016) Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 43:155–176. https://doi.org/10.1007/s10295-015-1723-5
Article
CAS
PubMed
Google Scholar
Kim HJ, Ruszczycky MW, Choi S et al (2011) Enzyme-catalysed [4+2] cycloaddition is a key step in the biosynthesis of spinosyn A. Nature 473:109–112. https://doi.org/10.1038/nature09981
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Xiao H, Bonanno JB et al (2013) Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function. Nature 498:123–126. https://doi.org/10.1038/nature12180
Article
CAS
PubMed
PubMed Central
Google Scholar
Kimos M, Burton M, Urbain D et al (2016) Development of an HTRF assay for the detection and characterization of inhibitors of catechol-O-methyltransferase. J Biomol Screen 21:490–495. https://doi.org/10.1177/1087057115616793
Article
CAS
PubMed
Google Scholar
Kloor D, Karnahl K, Kömpf J (2004) Characterization of glycine N-methyltransferase from rabbit liver. Biochem Cell Biol Biochim Biol Cell 82:369–374. https://doi.org/10.1139/o04-007
Article
CAS
Google Scholar
Knogge W, Weissenböck G (1984) Purification, characterization, and kinetic mechanism of S-adenosyl-l-methionine: vitexin 2″-O-rhamnoside 7-O-methyltransferase of Avena sativa L. Eur J Biochem 140:113–118. https://doi.org/10.1111/j.1432-1033.1984.tb08073.x
Article
CAS
PubMed
Google Scholar
Koch M, Lemke R, Heise K-P, Mock H-P (2003) Characterization of gamma-tocopherol methyltransferases from Capsicum annuum L and Arabidopsis thaliana. Eur J Biochem 270:84–92. https://doi.org/10.1046/j.1432-1033.2003.03364.x
Article
CAS
PubMed
Google Scholar
Kong L, Wang Q, Yang W et al (2020) Three recently diverging duplicated methyltransferases exhibit substrate-dependent regioselectivity essential for xantholipin biosynthesis. Acs Chem Biol 15:2107–2115. https://doi.org/10.1021/acschembio.0c00296
Article
CAS
PubMed
Google Scholar
Kozbial PZ, Mushegian AR (2005) Natural history of S-adenosylmethionine-binding proteins. BMC Struct Biol 5:19. https://doi.org/10.1186/1472-6807-5-19
Article
CAS
PubMed
PubMed Central
Google Scholar
Kreuzman AJ, Turner JR, Yeh WK (1988) Two distinctive O-methyltransferases catalyzing penultimate and terminal reactions of macrolide antibiotic (tylosin) biosynthesis. Substrate specificity, enzyme inhibition, and kinetic mechanism. J Biol Chem 263:15626–15633
Article
CAS
PubMed
Google Scholar
Kunjapur AM, Prather KLJ (2019) Development of a vanillate biosensor for the vanillin biosynthesis pathway in E. coli. ACS Synth Biol 8:1958–1967. https://doi.org/10.1021/acssynbio.9b00071
Article
CAS
PubMed
Google Scholar
Kunjapur AM, Hyun JC, Prather KLJ (2016) Deregulation of S-adenosylmethionine biosynthesis and regeneration improves methylation in the E. coli de novo vanillin biosynthesis pathway. Microb Cell Factories 15:1–17. https://doi.org/10.1186/s12934-016-0459-x
Article
CAS
Google Scholar
Levac D, Murata J, Kim WS, De Luca V (2008) Application of carborundum abrasion for investigating the leaf epidermis: molecular cloning of Catharanthus roseus 16-hydroxytabersonine-16-O-methyltransferase. Plant J Cell Mol Biol 53:225–236. https://doi.org/10.1111/j.1365-313X.2007.03337.x
Article
CAS
Google Scholar
Li Y, Zou X, Ma F et al (2017) Development of fluorescent methods for DNA methyltransferase assay. Methods Appl Fluoresc 5:012002. https://doi.org/10.1088/2050-6120/aa6127
Article
CAS
PubMed
Google Scholar
Li S, Guo J, Reva A et al (2018) Methyltransferases of gentamicin biosynthesis. Proc Natl Acad Sci U S A 115:1340–1345. https://doi.org/10.1073/pnas.1711603115
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Zhang R, Wang J et al (2020) Protein engineering for improving and diversifying natural product biosynthesis. Trends Biotechnol 38:729–744. https://doi.org/10.1016/j.tibtech.2019.12.008
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao C, Seebeck FP (2019) S-adenosylhomocysteine as a methyl transfer catalyst in biocatalytic methylation reactions. Nat Catal 2:696–701. https://doi.org/10.1038/s41929-019-0300-0
Article
CAS
Google Scholar
Lin J-L, Wagner JM, Alper HS (2017) Enabling tools for high-throughput detection of metabolites: metabolic engineering and directed evolution applications. Biotechnol Adv 35:950–970. https://doi.org/10.1016/j.biotechadv.2017.07.005
Article
CAS
PubMed
Google Scholar
Lin G-M, Warden-Rothman R, Voigt CA (2019) Retrosynthetic design of metabolic pathways to chemicals not found in nature. Curr Opin Syst Biol 14:82–107. https://doi.org/10.1016/j.coisb.2019.04.004
Article
Google Scholar
Liscombe DK, Louie GV, Noel JP (2012) Architectures, mechanisms and molecular evolution of natural product methyltransferases. Nat Prod Rep 29:1238–1250. https://doi.org/10.1039/C2NP20029E
Article
CAS
PubMed
Google Scholar
Liu W, Tang D, Shi R et al (2019) Efficient production of S-adenosyl-l-methionine from dl-methionine in metabolic engineered Saccharomyces cerevisiae. Biotechnol Bioeng 116:3312–3323. https://doi.org/10.1002/bit.27157
Article
CAS
PubMed
Google Scholar
Loeffler S, Deus-Neumann B, Zenk MH (1995) S-adenosyl-l-methionine:(S)-coclaurine-N-methyltransferase from Tinospora cordifolia. Phytochemistry 38:1387–1395. https://doi.org/10.1016/0031-9422(94)00813-9
Article
CAS
Google Scholar
Luo M (2012) Current chemical biology approaches to interrogate protein methyltransferases. ACS Chem Biol 7:443–463. https://doi.org/10.1021/cb200519y
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo H, Hansen ASL, Yang L et al (2019) Coupling S-adenosylmethionine–dependent methylation to growth: design and uses. PLOS Biol 17:e2007050. https://doi.org/10.1371/journal.pbio.2007050
Article
CAS
PubMed
PubMed Central
Google Scholar
Maxwell CA, Edwards R, Dixon RA (1992) Identification, purification, and characterization of S-adenosyl-l-methionine: isoliquiritigenin 2′-O-methyltransferase from alfalfa (Medicago sativa L.). Arch Biochem Biophys 293:158–166. https://doi.org/10.1016/0003-9861(92)90379-b
Article
CAS
PubMed
Google Scholar
Medema MH, Blin K, Cimermancic P et al (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346. https://doi.org/10.1093/nar/gkr466
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyer AJ, Segall-Shapiro TH, Glassey E et al (2019) Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nat Chem Biol 15:196–204. https://doi.org/10.1038/s41589-018-0168-3
Article
CAS
PubMed
Google Scholar
Mo X, Gui C, Wang Q (2017) Elucidation of a carboxylate O-methyltransferase NcmP in nocamycin biosynthetic pathway. Bioorg Med Chem Lett 27:4431–4435. https://doi.org/10.1016/j.bmcl.2017.08.010
Article
CAS
PubMed
Google Scholar
Mordhorst S, Andexer JN (2020) Round, round we go—strategies for enzymatic cofactor regeneration. Nat Prod Rep 37:1316–1333. https://doi.org/10.1039/D0NP00004C
Article
CAS
PubMed
Google Scholar
Morris JS, Yu L, Facchini PJ (2020) A single residue determines substrate preference in benzylisoquinoline alkaloid N-methyltransferases. Phytochemistry 170:112193. https://doi.org/10.1016/j.phytochem.2019.112193
Article
CAS
PubMed
Google Scholar
Murata J, Roepke J, Gordon H, De Luca V (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20:524–542. https://doi.org/10.1105/tpc.107.056630
Article
CAS
PubMed
PubMed Central
Google Scholar
Murfitt LM, Kolosova N, Mann CJ, Dudareva N (2000) Purification and characterization of S-adenosyl-l-methionine:benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methyl benzoate in flowers of Antirrhinum majus. Arch Biochem Biophys 382:145–151. https://doi.org/10.1006/abbi.2000.2008
Article
CAS
PubMed
Google Scholar
Nagel J, Culley LK, Lu Y et al (2008) EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell 20:186–200. https://doi.org/10.1105/tpc.107.055178
Article
CAS
PubMed
PubMed Central
Google Scholar
Nes WD, Song Z, Dennis AL et al (2003) Biosynthesis of phytosterols. Kinetic mechanism for the enzymatic C-methylation of sterols. J Biol Chem 278:34505–34516. https://doi.org/10.1074/jbc.M303359200
Article
CAS
PubMed
Google Scholar
Niwa R, Niimi T, Honda N et al (2008) Juvenile hormone acid O-methyltransferase in Drosophila melanogaster. Insect Biochem Mol Biol 38:714–720. https://doi.org/10.1016/j.ibmb.2008.04.003
Article
CAS
PubMed
Google Scholar
Nyyssölä A, Reinikainen T, Leisola M (2001) Characterization of glycine sarcosine N-methyltransferase and sarcosine dimethylglycine N-methyltransferase. Appl Environ Microbiol 67:2044–2050. https://doi.org/10.1128/AEM.67.5.2044-2050.2001
Article
PubMed
PubMed Central
Google Scholar
Ohashi M, Liu F, Hai Y et al (2017) SAM-dependent enzyme-catalysed pericyclic reactions in natural product biosynthesis. Nature 549:502–506. https://doi.org/10.1038/nature23882
Article
CAS
PubMed
PubMed Central
Google Scholar
Pakusch AE, Matern U (1991) Kinetic characterization of caffeoyl-coenzyme a-specific 3-O-methyltransferase from elicited parsley cell suspensions. Plant Physiol 96:327–330. https://doi.org/10.1104/pp.96.1.327
Article
CAS
PubMed
PubMed Central
Google Scholar
Parveen N, Cornell KA (2011) Methylthioadenosine/S-adenosylhomocysteine nucleosidase, a critical enzyme for bacterial metabolism. Mol Microbiol 79:7–20. https://doi.org/10.1111/j.1365-2958.2010.07455.x
Article
CAS
PubMed
Google Scholar
Pessi G, Kociubinski G, Mamoun CB (2004) A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation. Proc Natl Acad Sci U S A 101:6206–6211. https://doi.org/10.1073/pnas.0307742101
Article
CAS
PubMed
PubMed Central
Google Scholar
Petronikolou N, Nair SK (2015) Biochemical studies of mycobacterial fatty acid methyltransferase: a catalyst for the enzymatic production of biodiesel. Chem Biol 22:1480–1490. https://doi.org/10.1016/j.chembiol.2015.09.011
Article
CAS
PubMed
Google Scholar
Popadić D, Mhaindarkar D, Thai MHND et al (2021) A bicyclic S-adenosylmethionine regeneration system applicable with different nucleosides or nucleotides as cofactor building blocks. RSC Chem Biol. https://doi.org/10.1039/D1CB00033K
Article
PubMed
PubMed Central
Google Scholar
Poulton JE, Butt VS (1975) Purification and properties of S-adenosyl-l-methionine: caffeic acid O-methyltransferase from leaves of spinach beet (Beta vulgaris L). Biochim Biophys Acta 403:301–314. https://doi.org/10.1016/0005-2744(75)90060-1
Article
CAS
PubMed
Google Scholar
Poulton J, Hahlbrock K, Grisebach H (1976) Enzymic synthesis of lignin precursors. Purification of properties of the S-adenosyl-l-methionine: caffeic acid 3-O- methyltransferase from soybean cell suspension cultures. Arch Biochem Biophys 176:449–456. https://doi.org/10.1016/0003-9861(76)90187-9
Article
CAS
PubMed
Google Scholar
Rivett AJ, Roth JA (1982) Kinetic studies on the O-methylation of dopamine by human brain membrane-bound catechol O-methyltransferase. Biochemistry 21:1740–1742. https://doi.org/10.1021/bi00537a006
Article
CAS
PubMed
Google Scholar
Rueffer M, Bauer W, Zenk MH (1994) The formation of corydaline and related alkaloids in Corydalis cava in vivo and in vitro. Can J Chem 72:170–175. https://doi.org/10.1139/v94-026
Article
CAS
Google Scholar
Sherkhanov S, Korman TP, Clarke SG, Bowie JU (2016) Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme. Sci Rep 6:24239. https://doi.org/10.1038/srep24239
Article
CAS
PubMed
PubMed Central
Google Scholar
Shinoda T, Itoyama K (2003) Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis. Proc Natl Acad Sci 100:11986–11991. https://doi.org/10.1073/pnas.2134232100
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh S, Zhang J, Huber TD et al (2014) Facile chemoenzymatic strategies for the synthesis and utilization of S-adenosyl-l-methionine analogues. Angew Chem Int Ed 53:3965–3969. https://doi.org/10.1002/anie.201308272
Article
CAS
Google Scholar
Smith AA, Greene RC (1984) Cloning of the methionine regulatory gene, metJ, of Escherichia coli K12 and identification of its product. J Biol Chem 259:14279–14281
Article
CAS
PubMed
Google Scholar
Soldatou S, Eldjarn GH, Huerta-Uribe A et al (2019) Linking biosynthetic and chemical space to accelerate microbial secondary metabolite discovery. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnz142
Article
PubMed
PubMed Central
Google Scholar
Struck A-W, Thompson ML, Wong LS, Micklefield J (2012) S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. Chembiochem Eur J Chem Biol 13:2642–2655. https://doi.org/10.1002/cbic.201200556
Article
CAS
Google Scholar
Su Y, Hickey SF, Keyser SGL, Hammond MC (2016) In vitro and in vivo enzyme activity screening via rna-based fluorescent biosensors for S-adenosyl-l-homocysteine (SAH). J Am Chem Soc 138:7040–7047. https://doi.org/10.1021/jacs.6b01621
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Q, Huang M, Wei Y (2021) Diversity of the reaction mechanisms of SAM-dependent enzymes. Acta Pharm Sin B 11:632–650. https://doi.org/10.1016/j.apsb.2020.08.011
Article
CAS
PubMed
Google Scholar
Tang Q, Grathwol CW, Aslan-Üzel AS et al (2021) Directed evolution of a halide methyltransferase enables biocatalytic synthesis of diverse SAM analogs. Angew Chem Int Ed Engl 60:1524–1527. https://doi.org/10.1002/anie.202013871
Article
CAS
PubMed
Google Scholar
Taylor FR, Cronan JE (1979) Cyclopropane fatty acid synthase of Escherichia coli. Stabilization, purification, and interaction with phospholipid vesicles. Biochemistry 18:3292–3300. https://doi.org/10.1021/bi00582a015
Article
CAS
PubMed
Google Scholar
Tongsook C, Uhl MK, Jankowitsch F et al (2016) Structural and kinetic studies on RosA, the enzyme catalysing the methylation of 8-demethyl-8-amino-d-riboflavin to the antibiotic roseoflavin. FEBS J 283:1531–1549. https://doi.org/10.1111/febs.13690
Article
CAS
PubMed
PubMed Central
Google Scholar
Umeyama T, Okada S, Ito T (2013) Synthetic gene circuit-mediated monitoring of endogenous metabolites: identification of GAL11 as a novel multicopy enhancer of S-Adenosylmethionine level in yeast. ACS Synth Biol 2:425–430. https://doi.org/10.1021/sb300115n
Article
CAS
PubMed
Google Scholar
Upmeier B, Gross W, Köster S, Barz W (1988) Purification and properties of S-adenosyl-l-methionine:nicotinic acid-N-methyltransferase from cell suspension cultures of Glycine max L. Arch Biochem Biophys 262:445–454. https://doi.org/10.1016/0003-9861(88)90396-7
Article
CAS
PubMed
Google Scholar
Veser J (1987) Kinetics and inhibition studies of catechol O-methyltransferase from the yeast Candida tropicalis. J Bacteriol 169:3696–3700. https://doi.org/10.1128/jb.169.8.3696-3700.1987
Article
CAS
PubMed
PubMed Central
Google Scholar
von Reuss S, Domik D, Lemfack MC et al (2018) Sodorifen biosynthesis in the Rhizobacterium Serratia plymuthica involves methylation and cyclization of MEP-derived farnesyl pyrophosphate by a SAM-dependent C-methyltransferase. J Am Chem Soc 140:11855–11862. https://doi.org/10.1021/jacs.8b08510
Article
CAS
Google Scholar
Waditee R, Tanaka Y, Aoki K et al (2003) Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism aphanothece halophytica. J Biol Chem 278:4932–4942. https://doi.org/10.1074/jbc.M210970200
Article
CAS
PubMed
Google Scholar
Walton NJ, Peerless ACJ, Robins RJ et al (1994) Purification and properties of putrescine N-methyltransferase from transformed roots of Datura stramonium L. Planta 193:9–15. https://doi.org/10.1007/BF00191600
Article
CAS
Google Scholar
Wang C, S L, Dh T, Ca H, (2005) A general fluorescence-based coupled assay for S-adenosylmethionine-dependent methyltransferases. Biochem Biophys Res Commun 331:351–356. https://doi.org/10.1016/j.bbrc.2005.03.170
Article
CAS
PubMed
Google Scholar
Wang JX, Lee ER, Morales DR et al (2008) Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell 29:691–702. https://doi.org/10.1016/j.molcel.2008.01.012
Article
CAS
PubMed
PubMed Central
Google Scholar
Wengenmayer H, Ebel J, Grisebach H (1974) Purification and properties of a S-adenosylmethionine: isoflavone 4′-O-methyltransferase from cell suspension cultures of Cicer arietinum L. Eur J Biochem 50:135–143. https://doi.org/10.1111/j.1432-1033.1974.tb03881.x
Article
CAS
PubMed
Google Scholar
Woodson LC, Weinshilboum RM (1983) Human kidney thiopurine methyltransferase. Purification and biochemical properties. Biochem Pharmacol 32:819–826. https://doi.org/10.1016/0006-2952(83)90582-8
Article
CAS
PubMed
Google Scholar
Wu S, Jian X-H, Yuan H et al (2017) Unified biosynthetic origin of the benzodipyrrole subunits in CC-1065. ACS Chem Biol 12:1603–1610. https://doi.org/10.1021/acschembio.7b00302
Article
CAS
PubMed
Google Scholar
Wu Z, Kan SBJ, Lewis RD et al (2019) Machine learning-assisted directed protein evolution with combinatorial libraries. Proc Natl Acad Sci 116:8852–8858. https://doi.org/10.1073/pnas.1901979116
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu C, Shi Z, Shao J et al (2019) Metabolic engineering of Lactococcus lactis for high level accumulation of glutathione and S-adenosyl-l-methionine. World J Microbiol Biotechnol 35:185. https://doi.org/10.1007/s11274-019-2759-x
Article
CAS
PubMed
Google Scholar
Yang D, Park SY, Park YS et al (2020) Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends Biotechnol 38:745–765. https://doi.org/10.1016/j.tibtech.2019.11.007
Article
CAS
PubMed
Google Scholar
Yu F, Li M, Xu C et al (2016) Crystal structure and enantioselectivity of terpene cyclization in SAM-dependent methyltransferase TleD. Biochem J 473:4385–4397. https://doi.org/10.1042/BCJ20160695
Article
CAS
PubMed
Google Scholar
Yunus IS, Palma A, Trudeau DL et al (2020) Methanol-free biosynthesis of fatty acid methyl ester (FAME) in Synechocystis sp. PCC 6803. Metab Eng 57:217–227. https://doi.org/10.1016/j.ymben.2019.12.001
Article
CAS
PubMed
Google Scholar
Zhang Q, Wu Y, Xu Q et al (2021) Recent advances in biosensors for in vitro detection and in vivo imaging of DNA methylation. Biosens Bioelectron 171:112712. https://doi.org/10.1016/j.bios.2020.112712
Article
CAS
PubMed
Google Scholar
Zhao Y, Wang N, Wu H et al (2020) Structure-based tailoring of the first coumarins-specific bergaptol O-methyltransferase to synthesize bergapten for depigmentation disorder treatment. J Adv Res 21:57–64. https://doi.org/10.1016/j.jare.2019.10.003
Article
CAS
PubMed
Google Scholar