Acharya B, Sule I, Dutta A (2012) A review on advances of torrefaction technologies for biomass processing. Biomass Conv Bioref 2:349–369. https://doi.org/10.1007/s13399-012-0058-y
Article
CAS
Google Scholar
Adeleke A, Odusote J, Ikubanni P, Lasode O, Malathi M, Pasawan D (2021) Physical and mechanical characteristics of composite briquette from coal and pretreated wood fines. Int J Coal Sci Technol 8(5):1088–1098. https://doi.org/10.1007/s40789-021-00438-0
Article
CAS
Google Scholar
Ajala EO, Ighalo JO, Ajala MA, Adeniyi AG, Ayanshola AM (2021) Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresour Bioprocess 8:87. https://doi.org/10.1186/s40643-021-00440-z
Article
Google Scholar
Akande OM, Olorunnisola AO (2018) Potential of briquetting as a waste management option for handling market-generated vegetable waste in Port Harcourt. Nigeria Recycl 3(2):1–14. https://doi.org/10.3390/recycling3020011
Article
Google Scholar
Akogun OA, Waheed MA (2019) Property upgrades of some raw Nigerian biomass through torrefaction pre-treatment a review. J Phys: Conf Ser 1378(3):032026. https://doi.org/10.1088/1742-6596/1378/3/032026
Article
CAS
Google Scholar
Akogun OA, Waheed MA (2022) Development and performance evaluation of a piston type hydraulically operated briquetting machine with replaceable moulds. Agric Eng Int 24(1):113–127
Google Scholar
Akogun OA, Waheed MA, Ismaila SO, Dairo OU (2020) Co-briquetting characteristics of cassava peel with sawdust at different torrefaction pretreatment conditions Energy Sources Part a. Recov Utiliz Environ Eff. https://doi.org/10.1080/15567036.2020.1752333
Article
Google Scholar
Akogun OA, Waheed MA, Ismaila SO, Dairo OU (2022) Physical and combustion indices of thermally treated cornhusk and sawdust briquettes for heating applications in Nigeria. J Nat Fib 19(4):1201–1216. https://doi.org/10.1080/15440478.2020.1764445
Article
CAS
Google Scholar
Alamu OJ, Waheed MA, Jekayinfa SO (2008) Effect of ethanol-palm kernel oil ratio on alkali-catalysed biodiesel yield. Fuel 87(8–9):1529–1533. https://doi.org/10.1016/j.fuel.2007.08.011
Article
CAS
Google Scholar
Bai X, Wang G, Gong C, Yu Y, Liu W, Wang D (2017) Co-pelletizing characteristics of torrefied wheat straw with peanut shell. Bioresour Technol 233:373–381. https://doi.org/10.1016/j.biortech.2017.02.091
Article
PubMed
CAS
Google Scholar
Bajwa DS, Peterson T, Sharma N, Shojaeiarani J, Bajwa SG (2018) A review of densified solid biomass for energy production. Renew Sustain Energy Rev 96:296–305. https://doi.org/10.1016/j.rser.2018.07.040
Article
Google Scholar
Balogun AO, Lasode OA, Donald AG (2014) Devolatilisation kinetics and pyrolytic analyses of Tectona grandis (teak). Bioresour Techn 156:57–62. https://doi.org/10.1016/j.biortech.2014.01.007
Article
CAS
Google Scholar
Basu P (2018) Torrefaction, biomass gasification, pyrolysis and torrefaction—Practical design and theory, 3rd edn. Academic Press, San Diego, pp 93–154
Book
Google Scholar
Batidzirai B, Mignot APR, Schakel WB, Junginger HM, Faaij APC (2013) Biomass torrefaction technology: techno-economic status and future prospects. Ener 62:196–214. https://doi.org/10.1016/j.energy.2013.09.035
Article
CAS
Google Scholar
Bazargan A, Rough SL, McKay G (2014) Compaction of palm kernel shell biochars for application as solid fuel. Bioma Bioener 70:489–497. https://doi.org/10.1016/j.biombioe.2014.08.015
Article
CAS
Google Scholar
Chaves BS, Macedo LA, Galvão LGO, Carvalho ACR, Palhano AX, Vale AT, Silveira EA (2021) Production and characterization of raw and torrefied Phyllostachys aurea pellets and briquettes for energy purposes. 29th European Biomass Conf Exhib: 657-661https://doi.org/10.5071/29thEUBCE2021-2DV.2.1
Chen WH, Peng J, Bi XT (2015) A State-of-the-art review of biomass torrefaction, densification and applications. Renew Sustain Ener Rev 44:847–866. https://doi.org/10.1016/j.rser.2014.12.039
Article
CAS
Google Scholar
Chen WH, Lin BJ, Lin YY, Chu YS, Ubando AT, Show PL, On HC, Chang JS, Ho SH, Culaba AB, Pétrissans A, Pétrissans M (2021) Progress in biomass torrefaction: Principles, applications and challenges. Progr Ener Comb Sc 82:100887. https://doi.org/10.1016/j.pecs.2020.100887
Article
Google Scholar
Christoforou EA, Fokaides PA (2016) Life cycle assessment (LCA) of olive husk torrefaction. Renew Ener 90:257–266. https://doi.org/10.1016/j.renene.2016.01.022
Article
Google Scholar
Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145. https://doi.org/10.1146/annurev-chembioeng-061010-114205
Article
PubMed
CAS
Google Scholar
Conag AT, Villahermosa JER, Cabatingan LK, Go AW (2017) Energy densification of sugarcane bagasse through torrefaction under minimized oxidative atmosphere. J Environ Chem Eng 5:5411–5419. https://doi.org/10.1016/j.jece.2017.10.032
Article
CAS
Google Scholar
Conag AT, Villahermosa JER, Cabatingan LK, Go AW (2018) Energy densification of sugarcane leaves through torrefaction under minimized oxidative atmosphere. Ener Sustain Develop 42:160–169. https://doi.org/10.1016/j.jece.2017.10.032
Article
CAS
Google Scholar
Demirbas A (2007) Effects of moisture and hydrogen content on the heating value of fuels. Ener Sour Part a: Recov, Util Environ Eff 29(7):649–655. https://doi.org/10.1080/009083190957801
Article
CAS
Google Scholar
Dhaundiyal A, Hanon MM (2018) Calculation of kinetic parameters of the thermal decomposition of residual waste of coniferous species: Cedrus Deodara. Acta Techn Agricul 2:75–80. https://doi.org/10.2478/ata-2018-0014
Article
Google Scholar
Faizal HM, Jusoh MAM, Abdul-Rahman MR, Syahrullail S, Latiff ZA (2016) Torrefaction of palm biomass briquettes at different temperature. Jurnal Teknologi. https://doi.org/10.11113/jt.v78.9656
Article
Google Scholar
Faizal HM, Shamsuddin HS, Heiree MHM, Hanaffi MFMA, Abdul-Rahman MR, Rahman MM, Latiff ZA (2018) Torrefaction of densified mesocarp fibre and palm kernel shell. Renew Ener 122:419–428. https://doi.org/10.1016/j.renene.2018.01.118
Article
CAS
Google Scholar
Fuad MAHM, Razali MM, Izal ZNM, Faizal HM, Ahmad N, Abdul-Rahman MR, Rahman MdM (2020) Torrefaction of briquettes made of palm kernel shell with mixture of starch and water as binder. J Adv Res Fluid Mech Therm Sc 70(2):21–36
Article
Google Scholar
Garba MU, Gambo SU, Musa U, Tauheed K, Alhassan M, Adeniyi OD (2017) Impact of torrefaction on fuel property of tropical biomass feedstocks. Biofuels 9(3):369–377. https://doi.org/10.1080/17597269.2016.1271629
Article
CAS
Google Scholar
Gendek A, Aniszewskaa M, Malaťák J, Velebil J (2018) Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Bio Bioener 117:173–179. https://doi.org/10.1016/j.biombioe.2018.07.025
Article
Google Scholar
Granados DA, Ruiz RA, Vega LY, Chejne F (2017) Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process. Ener 139:818–827. https://doi.org/10.1016/j.energy.2017.08.013
Article
CAS
Google Scholar
Grigiante M, Antolini D (2014) Experimental results of mass and energy yield referred to different torrefaction pathways. Waste Bio Valor 5(1):11–17. https://doi.org/10.1007/s12649-013-9205-3
Article
CAS
Google Scholar
Hamid MF, Idroas MY, Ishak MZ, Alauddin ZAZ, Miskam MA, Abdullah MK (2016) An experimental study of briquetting process of torrefied rubber seed kernel and palm oil shell. BioMed Reser Int 2016:1679734. https://doi.org/10.1155/2016/1679734
Article
CAS
Google Scholar
Han Y, Tahmasebi A, Yu J, Li X, Meesri C (2013) An experimental study on binderless briquetting of low-rank coals. Chem Eng Technol 36(5):749–756. https://doi.org/10.1002/ceat.201300067
Article
CAS
Google Scholar
Hernández AB, Okonta F, Freeman N (2017) Sewage sludge charcoal production by N2- and CO2-torrefaction. J Environ Chem Eng 5:4406–4414. https://doi.org/10.1016/j.jece.2017.08.001
Article
CAS
Google Scholar
Huang Y, Finell M, Larsson S, Wang X, Zhang J, Wei R, Liu L (2017) Biofuel pellets made at low moisture content – influence of water in the binding mechanism of densified biomass. Biom Bioener 98:8–14
Article
CAS
Google Scholar
Ibeto CN, Ayodele JA, Anyanwu CN (2016) Evaluation of pollution potentials and fuel properties of Nigerian sub-bituminous coal and its blends with biomass. J Mater Environ Sc 7(8):2929–2937
CAS
Google Scholar
Ibeto CN, Enoch P, Alum OL (2017) Impact of torrefaction on fuel emissions and properties of lignite and their blends with biowastes. J Chem Soc Nig 42(2):15–21
Google Scholar
Ibitoye SE, Jen TC, Mahamood RM, Akinlabi ET (2021) Densification of agro-residues for sustainable energy generation: an overview. Bioresour Bioprocess 8:75. https://doi.org/10.1186/s40643-021-00427-w
Article
PubMed
PubMed Central
Google Scholar
Jiang L, Liang J, Yuan X, Li H, Li C, Xiao Z, Huang H, Wang H, Zeng G (2014) Co-pelletization of sewage sludge and biomass: the density and hardness of pellet. Bioresour Technol 166:435–443. https://doi.org/10.1016/j.biortech.2014.05.077
Article
PubMed
CAS
Google Scholar
Keeratiisariyakul P, Rousset P, Pattiya A (2019) Coupled effect of torrefaction and densification pre-treatment on biomass energetic and physical properties. J Sustain Ener Environ 10:97–106
Google Scholar
Kivumbi B, Jande YA, Kirabira JB, Kivevele TT (2021) Production of carbonized briquettes from charcoal fines using African elemi (Canarium schweinfurthii) resin as an organic binder. Ener Sour Part A Recov Utiliz Environ Eff. https://doi.org/10.1080/15567036.2021.1977870
Article
Google Scholar
Kopczynski M, Lasek JA, Iluk A, Zuwała J (2017) The co-combustion of hard coal with raw and torrefied biomasses (willow (Salix viminalis), olive oil residue and waste wood from furniture manufacturing). Ener 140:1316–1325. https://doi.org/10.1016/j.energy.2017.04.036
Article
CAS
Google Scholar
Kpalo SY, Zainuddin MF, Abd Manaf L, Roslan AM (2021) Evaluation of hybrid briquettes from corncob and oil palm trunk bark in a domestic cooking application for rural communities in Nigeria. J Clean Prod 284:124745. https://doi.org/10.1016/j.jclepro.2020.124745
Article
CAS
Google Scholar
Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7. https://doi.org/10.1186/s40643-017-0137-9
Article
PubMed
PubMed Central
Google Scholar
Langsdorf A, Volkmar M, Holtmann D, Ulber R (2021) Material utilization of green waste: a review on potential valorization methods. Bioresour Bioprocess 8:19. https://doi.org/10.1186/s40643-021-00367-5
Article
Google Scholar
Lateef FA, Ogunsuyi HO (2021) Jatropha curcas L. biomass transformation via torrefaction: Surface chemical groups and morphological characterization. Cur. Res. Green Sustain. Chem. 4: 100142. https://doi.org/10.1016/j.crgsc.2021.100142.
Lee SM, Ahn BJ, Choi DH, Han GS, Jeong HS, Ahn SH, Yang I (2013) Effects of densification variables on the durability of wood pellets fabricated with Larix kaempferi C. and Liriodendron tulipifera L. Sawdust Biomass Bioenergy 48:1–9. https://doi.org/10.1016/j.biombioe.2012.10.015
Article
CAS
Google Scholar
Lee JW, Hawkins B, Kidder MK, Evans BR, Buchanan AC, Day D (2016) Characterization of biochars produced from peanut hulls and pine wood with different pyrolysis conditions. Bioresour Bioprocess 3:15. https://doi.org/10.1186/s40643-016-0092-x
Article
Google Scholar
Li H, Liu X, Legros R, Bi XT, Lim CJ, Sokhansanj S (2012) Pelletization of torrefied sawdust and properties of torrefied pellets. Appl Ener 93:680–685. https://doi.org/10.1016/j.apenergy.2012.01.002
Article
CAS
Google Scholar
Mamvura TA, Danha G (2020) Biomass torrefaction as an emerging technology to aid in energy production. Heliyon 6:e03531. https://doi.org/10.1016/j.heliyon.2020.e03531
Article
PubMed
CAS
PubMed Central
Google Scholar
Markson IE, Akpan WA, Ufot E (2013) Determination of combustion characteristics of compressed pulverized
coal-rice husk briquettes. Int. J. Appl. Sc. Techn. 3(2): 61-64
Martin S, Olofsson I, Pommer L, Wiklund-Lindström S, Åberg K, Nordin A (2015) Effects of temperature and residence time on continuous torrefaction of spruce wood. Fuel Proc Techn 134:387–398. https://doi.org/10.1016/j.fuproc.2015.02.021
Article
CAS
Google Scholar
Mei Y, Liu R, Yang Q, Yang H, Shao J, Draper C, Zhang S, Chen H (2015) Torrefaction of cedar- wood in a pilot scale rotary kiln and the influence of industrial flue gas. Biores Techn 177:355–360. https://doi.org/10.1016/j.biortech.2014.10.113
Article
CAS
Google Scholar
Mei Y, Che Q, Yang Q, Draper C, Yang H, Zhang S, Chen H (2016) Torrefaction of different parts from a corn stalk and its effect on the characterization of products. Ind Crops Prod 92:26–33. https://doi.org/10.1016/j.indcrop.2016.07.021
Article
CAS
Google Scholar
Mitchual SJ, Frimpong-Mensah K, Darkwa NA, Akowuah JO (2013) Briquettes from maize cobs and Ceiba Pentandra at room temperature and low compacting pressure without a binder. Int J Ener Environ Eng 4(1):38. https://doi.org/10.1186/2251-6832-4-38
Article
Google Scholar
Moya R, Rodríguez-Zúñiga A, Puente-Urbina A, Gaitán-Álvarez J (2018) Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica. Ener 149:1–10. https://doi.org/10.1016/j.energy.2018.02.049
Article
CAS
Google Scholar
Mukhtar H, Feroze N, Munir MS, Javed F, Kazmi M (2019) Torrefaction process optimization of agriwaste for energy densification. Ener Sour Part A Recov Utiliz Environ Eff 42(20):2526–2544. https://doi.org/10.1080/15567036.2019.1609626
Article
CAS
Google Scholar
Nhuchhen DR, Basu P, Acharya B (2014) A comprehensive review on biomass torrefaction. Int J Renew Ener Biofuels. https://doi.org/10.5171/2014.506376
Article
Google Scholar
Nunes LJR, Matias JCO (2020) Biomass torrefaction as a key driver for the sustainable development and decarbonization of energy production. Sustainabl 12(3):922. https://doi.org/10.3390/su12030922
Article
CAS
Google Scholar
Nunes LJR, Matias JCO, Catalão JPS (2014) A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew Sustain Ener Rev 40:153–160. https://doi.org/10.1016/j.rser.2014.07.181
Article
CAS
Google Scholar
Nunes LJR, Matias JCO, Catalão JPS (2016) Wood pellets as a sustainable energy alternative in Portugal. Renew Ener 85:1011–1016. https://doi.org/10.1016/j.renene.2015.07.065
Article
Google Scholar
Nunes LJR, Matias JCO, Loureiro LMEF, Sá LCR, Silva HFC, Rodrigues AM, Causer TP, DeVallance DB, Ciolkosz DE (2021) Evaluation of the potential of agricultural waste recovery: energy densification as a factor for residual biomass logistics optimization. Appl Sci 11:20. https://doi.org/10.3390/app11010020
Article
CAS
Google Scholar
Nyakuma BB, Ahmad A, Johari A, Abdullah TAT, Oladokun O (2015) Torrefaction of pelletized oil palm empty fruit bunches. Int Sym Alco Fuels. https://doi.org/10.48550/arXiv.1505.05469
Article
Google Scholar
Nyakuma BB, Ahmad A, Johari A, Abdullah TAT, Oladokun O, Al-Shatri AH, Ripin A, Alir A (2019) Preliminary torrefaction of oil palm empty fruit bunch pellets. E3S Web Conf Sci. https://doi.org/10.1051/e3sconf/20199001014
Article
Google Scholar
Obi OF (2015) Evaluation of the effect of palm oil mill sludge on the properties of sawdust briquette. Renew Sustain Ener Rev 52:1749–1758. https://doi.org/10.1016/j.rser.2015.08.001
Article
Google Scholar
Obi OF, Pecenka R, Clifford MJ (2022) A review of biomass briquette binders and quality parameters. Ener 15:2426. https://doi.org/10.3390/en15072426
Article
CAS
Google Scholar
Ohm TI, Chae JS, Kim JK, Oh SC (2015) Study on the characteristics of biomass for co-combustion in coal power plant. J Mater Cyc was Mgt 17:249–257. https://doi.org/10.1007/s10163-014-0334-y
Article
CAS
Google Scholar
Okot DK, Bilsborrow PE, Phan AN (2019) Briquetting characteristics of bean straw-maize cob blend. Biom Bioener 126:150–158. https://doi.org/10.1016/j.biombioe.2019.05.009
Article
CAS
Google Scholar
Okuo DO, Waheed MA, Bolaji BO (2016) Evaluation of biogas yield of selected ratios of cattle, swine, and poultry wastes. Int J Gre Ener 13(4):366–372. https://doi.org/10.1080/15435075.2014.961460
Article
CAS
Google Scholar
Oladeji JT (2012) Comparative study of briquetting of few selected agro-residues commonly found in Nigeria. Pac J Sc Techn 13:1–9
Google Scholar
Oladeji JT, Enweremadu CC (2012) The effect of some processing parameters on physical and densification characteristics of corncob briquettes. Int J Ener Eng 2:22–27. https://doi.org/10.5923/j.ijee.20120201.04
Article
Google Scholar
Olugbade TO, Ojo OT (2020) Biomass torrefaction for the production of high-grade solid biofuels: A review. BioEner Res 13:999–1050. https://doi.org/10.1007/s12155-020-10138-3
Article
CAS
Google Scholar
Ong HC, Yu KL, Chen WH, Pillejera MK, Bi X, Tran KQ, Pètrissans A, Pètrissans M (2021) Variation of lignocellulosic biomass structure from torrefaction: a critical review. Renew Sustain Ener Rev 152:111698. https://doi.org/10.1016/j.rser.2021.111698
Article
CAS
Google Scholar
Oyelaran OA, Bolaji BO, Waheed MA, Adekunle MF (2014) Effects of binding ratios on some densification characteristics of groundnut shell briquettes. Iranica J Ener Environ 5(2):167–172. https://doi.org/10.5829/idosi.ijee.2014.05.02.08
Article
Google Scholar
Patel B, Gami B, Bhimani H (2011) Improved fuel characteristics of cotton stalk, prosopis and sugarcane bagasse through torrefaction. Ener Sustain Develop 15:372–375. https://doi.org/10.1016/j.esd.2011.05.002
Article
CAS
Google Scholar
Portilho GR, de Castro VR, de CarneiroOliveira Carneiro A, Zanuncio JC, Zanuncio AJV, Surdi PG, Gominho J, Araújo SO (2020) Potential of briquette produced with torrefied agroforestry biomass to generate energy. Forests 11:1272. https://doi.org/10.3390/f11121272
Article
Google Scholar
Poudel J, Ohm TI, Lee SH, Oh SC (2015) A study on torrefaction of sewage sludge to enhance solid fuel qualities. Was Mgt 40:112–118
Article
CAS
Google Scholar
Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood Part 2 Analysis of products. J Anal Appl Pyrol 77(1):35–40. https://doi.org/10.1016/j.jaap.2006.01.001
Article
CAS
Google Scholar
Proskurina S, Heinimo J, Schipfer F, Vakkilainen E (2017) Biomass for industrial applications: the role of torrefaction. Renew Ener 111:265–274. https://doi.org/10.1016/j.renene.2017.04.015
Article
Google Scholar
Roberts JJ, Cassula AM, Prado PO, Dias RA, Balestieri JAP (2015) Assessment of dry residual biomass potential for use as alternative energy source in the party of general pueyrredón, argentina. Renew Sustain Ener Rev 41:568–583. https://doi.org/10.1016/j.rser.2014.08.066
Article
Google Scholar
Rousset P, Macedo L, Commandré JM, Moreira A (2012) Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J Ana Appl Pyrol 96:86–91. https://doi.org/10.1016/j.jaap.2012.03.009
Article
CAS
Google Scholar
Sadh PK, Duhan S, Duhan JS (2018) Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess 5:1. https://doi.org/10.1186/s40643-017-0187-z
Article
Google Scholar
Saeed MA, Ahmad SW, Kazmi M, Mohsin M, Feroze N (2015) Impact of torrefaction technique on the moisture contents, bulk density and calorific value of briquetted biomass. Polish J Chem Tech 17(2):23–28. https://doi.org/10.1515/pjct-2015-0024
Article
CAS
Google Scholar
Safar M, Lin BJ, Chen WH, Langauer D, Chang JS, Raclavska H, Pétrissans A, Rousset P, Pétrissans M (2019) Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction. Appl Ener 235:346–355. https://doi.org/10.1016/j.apenergy.2018.10.065
Article
CAS
Google Scholar
Saleh SB, Hansen BB, Jensen PA, Dam-Johansen K (2013) Influence of biomass chemical properties on torrefaction characteristics. Ener Fuels 27(12):7541–7548. https://doi.org/10.1021/ef401788m
Article
CAS
Google Scholar
Shahbaz M, AlNouss A, Parthasarathy P, Abdelaal AH, Mackey H, McKay G, Al-Ansari T (2020) Investigation of biomass components on the slow pyrolysis products yield using Aspen Plus for techno-economic analysis. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-01040-1
Article
Google Scholar
Sher F, Yaqoob A, Saeed F, Zhang S, Jahan Z, Klemes JJ (2020) Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation. Ener 209:118444. https://doi.org/10.1016/j.energy.2020.118444
Article
CAS
Google Scholar
Shu MY, Yin HY, Liu GH (2012) Experimental researches on composite bentonite-based briquette binder. Adv Mater Res 496:276–280. https://doi.org/10.4028/www.scientific.net/AMR.496.276
Article
CAS
Google Scholar
Su Y, Zhang S, Liu L, Xu D, Xiong Y (2018) Investigation of representative components of flue gas used as torrefaction pretreatment atmosphere and its effects on fast pyrolysis behaviors. Bioresou Techn 267:584–590. https://doi.org/10.1016/j.biortech.2018.07.078
Article
CAS
Google Scholar
Sumaira K, Shahid M, Nawaz C, Hafiza S (2019) Physicochemical characterization of thar coal and torrefied corn cob. Ener Expl Expl 37:1286–1305
Article
Google Scholar
Tabares JLM, Ortiz L, Granada E, Viar FP (2000) Feasibility study of energy use for densificated lignocellulosic material (briquettes). Fuel 79(10):1229–1237. https://doi.org/10.1016/S0016-2361(99)00256-2
Article
CAS
Google Scholar
Tong S, Xiao L, Li X, Zhu X, Liu H, Luo G, Worasuwannarak N, Kerdsuwan S, Fungtammasan B, Yao H (2018) A gas-pressurized torrefaction method for biomass wastes. Ener Conv Mangt 173:29–36. https://doi.org/10.1016/j.enconman.2018.07.051
Article
CAS
Google Scholar
Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Ener Rev 55:467–481. https://doi.org/10.1016/j.rser.2015.10.122
Article
CAS
Google Scholar
Tumuluru JS, Wright CT, Hess JR, Kenney KL (2011) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biof Bioprod Bioref 5(6):683–707. https://doi.org/10.1002/bbb.324
Article
CAS
Google Scholar
Tumuluru JS, Shahab SJ, Wright CT, Boardman RD (2010) Biomass torrefaction process review and moving bed torrefaction system model development. Oak Ridge National Laboratory, INT/EXT-10019569 and INL/CON-10–18636. https://doi.org/10.2172/1042391.
Waheed MA, Akogun OA (2020) Quality enhancement of fuel briquette from cornhusk and cassava peel blends for co-firing in coal thermal plant. Int J Ener Res. https://doi.org/10.1002/er.5865
Article
Google Scholar
Waheed MA, Akogun OA (2021) Synergetic effects of feedstock mixture and torrefaction on some briquette characteristics of cornhusk and sawdust wastes. Appl Environ Res. https://doi.org/10.35762/AER.2021.43.3.8
Article
Google Scholar
Wallace CA, Muhammad T, Afzal MT, Saha GG (2019) Effect of feedstock and microwave pyrolysis temperature on physio-chemical and nano-scale mechanical properties of biochar. Bioresour Bioprocess 6:33. https://doi.org/10.1186/s40643-019-0268-2
Article
Google Scholar
Wang L, Barta-Rajnai E, Skreiberg Q, Khalil R, Czégény Z, Jakab E, Barta Z, Grønli M (2018) Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark. Appl Ener 227:137–148. https://doi.org/10.1016/j.apenergy.2017.07.024
Article
CAS
Google Scholar
Wild M, Calderón C (2021) Torrefied biomass and where is the sector currently standing in terms of research, technology development, and implementation. Front Ener Reser. https://doi.org/10.3389/fenrg.2021.678492
Article
Google Scholar
Xu X, Tu R, Sun Y, Li Z, Jiang E (2018) Influence of biomass pretreatment on upgrading of bio-oil: Comparison of dry and hydrothermal torrefaction. Biores Techn 262:261–270. https://doi.org/10.1016/j.biortech.2018.04.037
Article
CAS
Google Scholar
Yek PNY, Cheng YW, Liew RK, Mahari WAW, Ong HC, Chen WH, Peng WH, Park YK, Sonne C, Kong SH, Tabatabaei M, Aghbashlo M, Lam SS (2021) Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: a review. Renew Sustain Ener Rev 151:111645. https://doi.org/10.1016/j.rser.2021.111645
Article
CAS
Google Scholar
Zhang Y, Fu D, Zheng H, Yang Y, Wang W (2014) Research progress of briquette binder. Clean Coal Techn 20:24–28
CAS
Google Scholar
Zhang S, Dong Q, Zhang L, Xiong Y (2016) Effects of water washing and torrefaction on the pyrolysis behavior and kinetics of rice husk through TGA and Py-GC/MS. Biores Techn 199:352–361. https://doi.org/10.1016/j.biortech.2015.08.110
Article
CAS
Google Scholar
Zhang S, Su Y, Xu D, Zhu S, Zhang H, Liu X (2018a) Effects of torrefaction and organic-acid leaching pretreatment on the pyrolysis behavior of rice husk. Ener 149:804–813. https://doi.org/10.1016/j.energy.2018.02.110
Article
CAS
Google Scholar
Zhang G, Sun Y, Xu Y (2018b) Review of briquette binders and briquetting mechanism. Renew Sustain Ener Rev 82:477–487. https://doi.org/10.1016/j.rser.2017.09.072
Article
CAS
Google Scholar
Zhang Y, Chen F, Chen D, Cen K, Zhang J, Cao X (2020) Upgrading of biomass pellets by torrefaction and its influence on the hydrophobicity, mechanical property, and fuel quality. Biom Conv Bioref. https://doi.org/10.1007/s13399-020-00666-5
Article
Google Scholar
Zhang L, Tan J, Xing G, Dou X, Guo X (2021) Cotton stalk-derived hydrothermal carbon for methylene blue dye removal: investigation of the raw material plant tissues. Bioresour Bioprocess 8:10. https://doi.org/10.1186/s40643-021-00364-8
Article
Google Scholar
Zhao S, Ta N, Wang X (2017) Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Ener 10:1293
Google Scholar
Zheng Y, Tao L, Yang X, Huang Y, Liu C, Gu J, Zheng Z (2017) Effect of the torrefaction temperature on the structural properties and pyrolysis behaviour of biomass. BioResources 12(2):3425–3447
Article
CAS
Google Scholar